

Sets, Functions and Groups

Visit our website Last Hope Study For all Subjects notes with video 🕨 Explanation

Chapter – 2

Sets, Functions and Groups

It holds always

Solution:

 $A \cap U$

(ii)

(xi) $n(A \cap B) = n(B)$ **Solution:** $B \subseteq A$ (xii) $U - A = \phi$ Solution: U = AU $A \cap U = A$ (iii) $A \cup U$ $A \cup U = U$ $A \cup \phi$ (iv) U $A \cup \phi = A$ $\phi \cap \phi = \phi$ **(v)** Use Venn diagrams to verify the following (i) $A-B=A\cap B^c$ (BWP 2022) U A - B $A \equiv$ B': III $A \cap B': \square$ From Venn diagrams $A - B = A \cap B^c$ $(A-B)^{c} \cap B = B$ (ii)

(i)

Chapter – 2

From Venn diagrams

$$(A-B)^c \cap B = B$$

De Morgan's laws:

(i)
$$(A \cup B)' = A' \cap B'$$

(ii) $(A \cap B)' = A' \cup B'$

Proof:-

(i)
$$(A \cup B)' = A' \cap B'$$

Let $x \in (A \cup B)'$
 $\Rightarrow x \notin A \cup B$
 $\Rightarrow x \notin A$ and $x \notin B$
 $\Rightarrow x \notin A$ and $x \notin B$
 $\Rightarrow x \in A'$ and $x \in B'$
 $\Rightarrow x \in A' \cap B'$
But x is an arbitrary member of
 $(A \cup B)'$.
Therefore $(A \cup B)' \subseteq A' \cap B'$ (i)
Conversely, suppose that
 $y \in A' \cap B'$
 $\Rightarrow y \notin A'$ and $y \notin B'$
 $\Rightarrow y \notin A \cup B$
 $\Rightarrow y \notin A \cup B$
 $\Rightarrow y \in (A \cup B)'$
Therefore $A' \cap B' \subseteq (A \cup B)'$ (ii)
From (i) and (ii) we conclude that
 $(A \cup B)' = A' \cap B'$
(ii) $(A \cap B)' = A' \cup B'$
Let $x \in (A \cap B)'$
 $\Rightarrow x \notin A \cap B$

Sets, Functions and Groups $\Rightarrow x \notin A$ or $x \notin B$

 $\Rightarrow x \in A'$ or $x \in B'$ $\Rightarrow x \in A' \cup B'$ Therefore $(A \cap B)' \subseteq A' \cup B'$ (i) Conversely, suppose that $y \in A' \cup B'$ $\Rightarrow y \in A'$ or $y \in B'$ $\Rightarrow y \notin A \text{ or } y \notin B$ $\Rightarrow y \notin (A \cap B)$ \Rightarrow y $\in (A \cap B)'$ Therefore $A' \cup B' \subseteq (A \cap B)'$ (ii) From (i) and (ii) we conclude that $(A \cap B)' = A' \cup B'$ **Distributive laws** (i) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (ii) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ **Proof**: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ Let $x \in A \cup (B \cap C)$ $\Rightarrow x \in A \text{ or } x \in B \cap C$ $\Rightarrow x \in A$ or $x \in B$ and $x \in C$ $\Rightarrow x \in A$ or $x \in B$ and $x \in A$ or $x \in C$ $\Rightarrow x \in (A \cup B)$ and $x \in (A \cup C)$ $\Rightarrow x \in (A \cup B) \cap (A \cup C)$ Thus $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$ (i) Conversely suppose that $y \in (A \cup B) \cap (A \cup C)$ \Rightarrow y \in (A \cup B) and y \in (A \cup C) \Rightarrow y \in A or y \in B and y \in A or $y \in C$ \Rightarrow *y* \in *A* or *y* \in *B* and *y* \in *C* $\Rightarrow y \in A \text{ or } y \in (B \cap C)$ \Rightarrow y \in A \cup (B \cap C) Thus $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$ (ii) From (i) and (ii)

Visit our website Last Hope Study For all Subjects notes with video 🕒 Explanation

Chapter – 2

Sets, Functions and Groups

Verification of the properties with the help of Venn diagrams

(i) Associative property of union

 $A \cup (B \cup C) = (A \cup B) \cup C$

 $A: \blacksquare \\ B \cup C :\equiv \\ A \cup (B \cup C) : \blacksquare , \equiv \text{ or } \equiv$

R.H.S= $(A \cup B) \cup C$

(ii) Associative property of intersection

 $A \cap (B \cap C) = (A \cap B) \cap C$

L.H.S = $A \cap (B \cap C)$

 $B \cap C$:

 $A \cap (B \cap C)$: \square

$$\mathbf{R.H.S} = (\mathbf{A} \cap B) \cap C$$

 $A \cap B : \equiv$

C: |||

 $(\mathbf{A} \cap B) \cap C$:

From two diagrams we can see that

 $\mathbf{A} \cap (B \cap C) = (A \cap B) \cap C$

(iii) Distributive laws

Proof: (a) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Visit our website Last Hope Study For all Subjects notes with video **D** Explanation

