Chapter – 2

Sets, Functions and Groups

**Mathematics-11** Exercise - 2.3 Download All Subjects Notes from website 🌐 www.lasthopestudy.com Q.1 Verify the commutative properties of  $\{x \mid x \in \{ \land x \ge 0\} \cap \{ = \{x \mid x \in \{ \land x \ge 0\} = A \}$ union & intersection for the and  $B \cap A = A$  (QA  $\subseteq B$ ) following pairs of sets. Which satisfies commutative (DGK 2021, LHR 2022, BWP 2023, property of intersection. MTN 2023, GRW 2023) Q.2 Verify the properties for the sets A, (i)  $A = \{1, 2, 3, 4, 5\}, B = \{4, 6, 8, 10\}$ B and C given below.  $A = \{1, 2, 3, 4\}, B = \{3, 4, 5, 6, 7, 8\},\$ **Solution: (a)**  $A \cup B = \{1, 2, 3, 4, 5, 6, 8, 10\}$  (i)  $C = \{5, 6, 7, 9, 10\}$  $B \cup A = \{1, 2, 3, 4, 5, 6, 8, 10\}$  (ii) (i) Associativity of union. From (i) and (ii) commutative  $A \cup B = \{1, 2, 3, \dots, 8\}$ property of union is satisfied.  $(A \cup B) \cup C = \{1, 2, 3, \dots, 10\}$  $A \cap B = \{4\}$ Now (iii)  $B \cup C = \{3, 4, 5, \dots, 10\}$  $B \cap A = \{4\}$ (iv)  $A \cup (B \cup C) = \{1, 2, 3, ..., 10\}$ From (iii) and (iv) commutative Hence proved that property of intersection is satisfied.  $A \cup (B \cup C) = (A \cup B) \cup C$ (i) Ε,] Associativity of intersection. (ii) **Solution:**  $\mathbf{Y} \cup \mathbf{c} = \mathbf{c} = \mathbf{c} \cup \mathbf{Y}$  $A \cap B = \{3, 4\}$ Which satisfies commutative  $(A \cap B) \cap C = \phi$ property of union. Also,  $\mathbb{Y} \cap \mathfrak{c} = \mathbb{Y} = \mathfrak{c} \cap \mathbb{Y}$  $B \cap C = \{5, 6, 7\}$ Which satisfies commutative  $A \cap (B \cap C) = \phi$ property of intersection. Hence proved that  $A = \{x \mid x \in i \land x > 0\}, B = i$ (ii)  $(A \cap B) \cap C = A \cap (B \cap C)$ Solution: Distributivity of union over (iii)  $A \cup B = \{x \mid x \in i \land x \ge 0\} \cup i = i$ intersection.  $(QA \subseteq B)$ and  $B \cup A = A$  $B \cap C = \{5, 6, 7\}$ So commutative property of union is  $A \cup (B \cap C) = \{1, 2, 3, 4, 5, 6, 7\}$ satisfied. (i) Also  $A \cap B =$ Visit our website Last Hope Study For all Subjects notes with video Persplanation

# Chapter – 2

## Sets, Functions and Groups

|              | $A \cup B = \{1, 2, 3, \dots, 8\}$                                               |
|--------------|----------------------------------------------------------------------------------|
|              | $A \cup C = \{1, 2, 3, 4, 5, 6, 7, 9, 10\}$                                      |
|              | Now                                                                              |
|              | $(A \cup B) \cap (A \cup C) = \{1, 2, 3, 4, 5, 6, 7\}$                           |
|              | (ii)                                                                             |
|              | From (i) and (ii) we conclude                                                    |
|              | that $(P = C) = (A + P) = (A + C)$                                               |
|              | $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$<br>Which satisfies the property |
| (iv)         | Distributivity of                                                                |
|              | intersection over union.                                                         |
|              | $B \cup C = \{3, 4, 5, \dots, 10\}$                                              |
|              | $A \cap (B \cup C) = \{3,4\}  (i)$                                               |
|              | $A \cap C = \phi, \qquad A \cap B = \{3, 4\}$                                    |
|              | $(A \cap B) \cup (A \cap C) = \{3,4\}$ (ii)                                      |
|              | From (i) and (ii) we conclude                                                    |
|              | that                                                                             |
|              | $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$                                 |
| ( <b>b</b> ) | Which satisfies the property.<br>$A = A B = \{0\}, C = \{0, 1, 2\}$              |
| (b)          | $A = \phi, B = \{0\}, C = \{0, 1, 2\}$                                           |
| (i)          | Associativity of union.<br>$A \cup B = \{0\}$                                    |
|              |                                                                                  |
|              | $(A \cup B) \cup C = \{0, 1, 2\}  (i)$                                           |
|              | $B \cup C = \{0, 1, 2\}$                                                         |
|              | $A \cup (B \cup C) = \{0, 1, 2\}  \text{(ii)}$                                   |
|              | (i) and (ii) we get the proof.                                                   |
| (ii)         | Associativity of intersection.<br>$A \cap B = \phi$                              |
|              |                                                                                  |
|              |                                                                                  |
|              | $B \cap C = \{0\}$                                                               |
|              | $A \cap (B \cap C) = \phi \qquad (ii)$                                           |
|              | From (i) and (ii) we conclude                                                    |

the result.

| Sets, Functions and Groups |                                                                                                                                                       |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| (iii)                      | Distributivity of union over                                                                                                                          |
|                            | intersection.<br>$B \cap C = \{0\}$                                                                                                                   |
|                            |                                                                                                                                                       |
|                            | $A \cup (B \cap C) = \{0\} $ (i)                                                                                                                      |
|                            | $A \cup B = \{0\}$                                                                                                                                    |
|                            | $A \cup C = \{0, 1, 2\}$                                                                                                                              |
|                            | $(A \cup B) \cap (A \cup C) = \{0\}$ (ii)                                                                                                             |
|                            | From (i) and (ii) we get the                                                                                                                          |
|                            | proof.                                                                                                                                                |
| (iv)                       | Distributivity of                                                                                                                                     |
|                            | intersection over union.                                                                                                                              |
|                            | $B \cup C = \{0, 1, 2\}$                                                                                                                              |
|                            | $A \cap (B \cup C) = \phi \qquad (i)$                                                                                                                 |
|                            | $A \cap B = \phi, \qquad A \cap C = \phi$                                                                                                             |
|                            | $(A \cap B) \cup (A \cap C) = \phi  \text{(ii)}$                                                                                                      |
|                            | From (i) and (ii) we get the proof.                                                                                                                   |
| (c)                        | [,0,C                                                                                                                                                 |
| (i)                        | Associativity of union.                                                                                                                               |
|                            | ${\tt Y} \cup {\tt \phi} = {\tt \phi} \qquad \left( \because \Box \subset \Box \right)$                                                               |
|                            | $({\tt U} {\tt \psi}) \cup {\tt w} = {\tt \psi} \cup {\tt w} = {\tt w}$                                                                               |
|                            | $(Q \not c \subset \square)$ (i)                                                                                                                      |
|                            | $\phi \cup \alpha = \alpha$ (:: $\Box \subset \Box$ )                                                                                                 |
|                            | ${\mathbb Y} \cup ({\mathfrak c} \cup {\mathbb Z}) = {\mathbb Y} \cup {\mathbb Z} = {\mathbb Z}$                                                      |
|                            | $\left( Q {\mathbb{Y}} \subset {\mathbb{X}} \right) \tag{ii}$                                                                                         |
|                            | (i) and (ii) verify the                                                                                                                               |
|                            | property.                                                                                                                                             |
| (ii)                       | Associativity of intersection.                                                                                                                        |
|                            | $(\mathbf{Y} \cap \mathbf{c}) \cap \mathbf{a} = \mathbf{Y} \cap \mathbf{a} = \mathbf{Y}$                                                              |
|                            | $ (\mathbf{Q} \mathbf{Y} \subset \mathbf{X}) $ (i)                                                                                                    |
|                            | $(Q + C \sim) \qquad (1)$ $\phi \cap \alpha = \phi \qquad (:: \Box \subset \Box)$                                                                     |
|                            |                                                                                                                                                       |
|                            | $ \underbrace{\mathbb{Y}}_{A} \left( \oint \cap \mathbf{x} \right) = \underbrace{\mathbb{Y}}_{A} \left( \oint = \underbrace{\mathbb{Y}}_{A} \right) $ |
|                            | $\left(QF{\subset}\boldsymbol{e}\right) \qquad (\mathrm{ii})$                                                                                         |

Visit our website Last Hope Study For all Subjects notes with video **D** Explanation

### Chapter – 2

### Sets, Functions and Groups

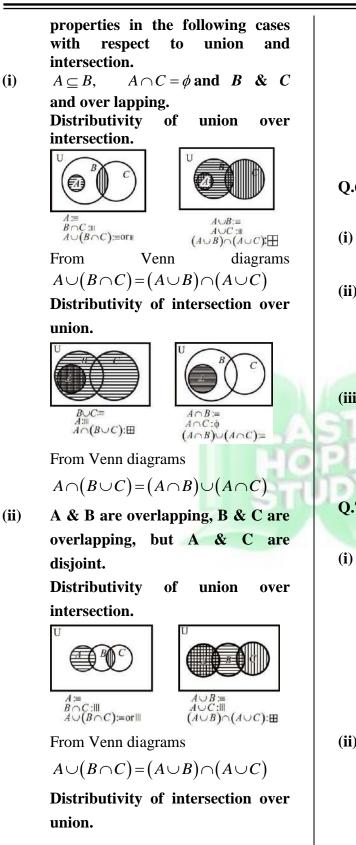
From (i) and (ii) we have proof. (iii) Distributivity of union over intersection.  $\boldsymbol{c} \cap \boldsymbol{\Sigma} = \boldsymbol{c}$  $(Q \notin \subset \mathbb{Z})$  $\mathbb{Y} \cup (\phi \cap \mathbb{Z}) = \mathbb{Y} \cup \phi = \phi$  (i)  $(Q \cong \subset \phi)$  $(\mathbb{Y} \cup \mathfrak{c}) \cap (\mathbb{Y} \cup \mathfrak{a}) = \mathfrak{c} \cap \mathfrak{a}$  $= \phi \quad (Q\phi \subset \square)$ (ii) From (i) & (ii) we get the result. (iv) **Distributivity of Q.4** intersection over union.  $\phi \cup \alpha = \alpha \quad (:: \Box \subset \Box)$  $\mathbb{Y} \cap (\phi \cup \alpha) = \mathbb{Y} \cap \alpha = \mathbb{Y}$  $(Q \cong \subset \alpha)$ (i)  $(\mathbb{Y} \cap \mathfrak{c}) \cup (\mathbb{Y} \cap \mathbb{Z}) = \mathbb{Y} \cup \mathbb{Y} = \mathbb{Y}$ (ii) From (i) and (ii) we get the proof. Q.3 Verify de-Morgan's Laws for the following sets.  $U = \{1, 2, 3, \dots, 20\}$  $A = \{2, 4, 6, \dots, 20\}$  $B = \{1, 3, 5, 7, \dots, 19\}$  $A \cup B = \{1, 2, 3, \dots, 20\}$ Solution:  $(A \cup B)' = U - (A \cup B)$  $= \phi$ A' = U - A $=\{1,3,5,...,19\}$ **Q.5** B' = U - B

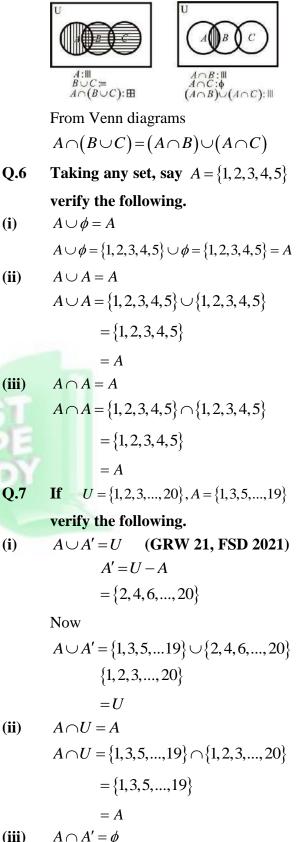
 $=\{2, 4, 6, \dots, 20\}$  $A' \cap B' = \phi$ Which shows that  $(A \cup B)' = A' \cap B'$ Now  $A \cap B = \phi$  $(A \cap B)' = \{1, 2, 3, \dots, 20\}$  $A' \cup B' = \{1, 2, 3, \dots, 20\}$ Which shows that  $(A \cap B)' = A' \cup B'$ Hence the proof. Let U= The set of English (FSD 2023) alphabets.  $A = \{x \mid x \text{ is a vowel}\}$  $B = \{y \mid y \text{ is a consonant}\}$ Verify de-Morgan's Laws. Now,  $U = \{a, b, c, d, e, ..., z\}$  $A = \{a, e, i, o, u\}$  $B = \begin{cases} b, c, d, f, g, h, j, k, l, m, n, p, q, r, \\ s, t, v, w, x, y, z \end{cases}$ Now  $A \cup B = \{a, b, c, \dots, z\}$  $(A \cup B)' = \phi$ (i) A' = U - A $= \begin{cases} b, c, d, f, g, h, j, k, l, m, n, p, q, r, \\ s, t, v, w, x, y, z \end{cases}$ B' = U - R $= \{a, e, i, o, u\}$  $A' \cap B' = \phi$ (ii) From (i) and (ii)  $(A \cup B)' = A' \cap B'$ Also  $A \cap B = \phi$  $(A \cap B)' = U - \phi = U$ (iii)  $A' \cup B' = \{a, b, c, ..., z\} = U$  (iv) Form (iii) and (iv)  $(A \cap B)' = A' \cup B'$ With the help of Venn diagrams, distributive verify the two

Visit our website Last Hope Study For all Subjects notes with video 🕒 Explanation

## Chapter – 2

#### Sets, Functions and Groups





Visit our website Last Hope Study For all Subjects notes with video **D** Explanation

### Chapter – 2

## Sets, Functions and Groups

From Venn diagrams

$$A' = \{2, 4, 6, \dots, 20\}$$
$$A \cap A' = \{1, 3, 5, \dots, 19\} \cap \{2, 4, 6, \dots, 20\}$$
$$= \phi$$

Q.8 From suitable properties of union and intersection deduce the following results.

(i) 
$$A \cap (A \cup B) = A \cup (A \cap B)$$
 (RWP 2022)

**Solution:** L.H.S. =  $A \cap (A \cup B)$ 

$$= (A \cap A) \cup (A \cap B)$$
  
(Distributive Law)  
$$= A \cup (A \cap B) \quad (QA \cap A = A)$$
  
$$= R.H.S.$$

(ii) 
$$A \cup (A \cap B) = A \cap (A \cup B)$$

Solution:

L.H.S. = 
$$A \cup (A \cap B)$$
  
= $(A \cup A) \cap (A \cup B)$   
(Distributive Law)  
= $A \cap (A \cup B)$  (Q $A \cup A = A$ )  
= R.H.S.

Using Venn diagrams, verify the following results.

(i) 
$$A \cap B' = A$$
 iff  $A \cap B = \phi$   

$$A \cap B' = A$$

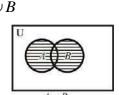
$$A \cap B = \phi$$

$$A \cap B' = A$$

From Venn diagrams  $A \cap B' = A$ 

(ii) 
$$(A-B)\cup B=A\cup B$$

$$A-B := B: ||| \\ (A-B) \cup B := \text{ or } |||$$





$$(A-B) \cup B = A \cup B$$
(iii) 
$$(A-B) \cap B = \phi$$

$$U$$

$$A-B :=$$

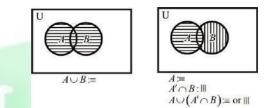
$$B:|||$$

$$(A-B) \cap B:H$$

As such region does not exist so

$$(A-B) \cap B = \phi$$

(iv) 
$$A \cup B = A \cup (A' \cap B)$$



### From Venn diagrams

$$A \cup B = A \cup (A' \cap B)$$

Visit our website Last Hope Study For all Subjects notes with video P Explanation