Chapter – 2

Sets, Functions and Groups

Mathematics-11 Exercise - 2.8

Download All Subjects Notes from website 🌐 www.lasthopestudy.com

- Q.1 Operation ⊕ is performed on the two-member set G={0,1} is shown in the adjoining table. Answer the questions.
- (i) Name the identity element if it exists.

\oplus	0	1
0	0	1
1	1	0

Solution: From the given table, 0 + 0 = 0, 0 + 1 = 1 which shows that 0 is the identity element.

(ii) What is the inverse of 1?

Solution: Since 1+1=0 (identity) so inverse of 1 is 1.

(iii) Is the set G, under the given operation a group? Abelian or non-Abelian?

- Solution: The numbers in table satisfy all the properties of abelian group so G is an abelian group under addition.
- **Q.2** The operation \oplus as performed on the set $\{0,1,2,3\}$ is shown in the adjoining table,

show that the set is an abelian group.

Solution:

\oplus	0	1	2	3	
0	0	1	2	3	
1	1	2	3	0	
2	2	3	0	1	
3	3	0	1	2	

- (i) Each element of the table is an element of the given set $\{0,1,2,3\}$, so closure law holds.
- (ii) Associative law holds.

e.g.
$$(1 + 2) + 3 = 1 + (2 + 3)$$

 $3 + 3 = 1 + 1$

2 = 2

- (iii) 0 is the identity element.
- (iv) The inverse of 0 is 0.
 - The inverse of 1 is 3.

The inverse of 2 is 2.

Wa ly.Com

Cha	pter –	2	Sets, Functions and Groups
	The i	nverse of 3 is 1.	
	so inv	verse of every element exists.	
(v)	Com	mutative law also holds. e.g. $1 + 2 =$	2 + 1
		3 =	3
	So th	e set $\{0,1,2,3\}$ is an abelian group un	der addition modulo 4.
Q.3	For e	each of the following sets, determin	ne whether or not the set forms a group with
	respe	ect to the indicated operation.	
	<u>S</u>	<u>et</u>	Operations
(i) The s	set of rational numbers	×
(ii	i) The s	set of rational numbers	+
(i	ii) The	set of positive rational numbers	×
(i	v) The	set of integers	+
(V Solut	ion:	set of integers	×
Solut (i)	Let (O = The set of rational numbers	
(-)	(i)	As product of any two rational nu	where is also a rational number so Q is closed
	(1)	wrt multiplication	
	(ii)	Multiplication of rational numbers	is always associative
		i.e. $\forall a, b, c \in Q \Rightarrow (ab)c = a(bc)$	PEI
	(iii)	Here identity element is $1 \in Q$	JDY I
	(iv)	Multiplicative inverse of $0 \in Q$	does not exist, so <i>O</i> is not a group under
		multiplication	
(ii)	Let Q	Q = The set of rational numbers	
	(i)	As sum of any two rational number	ers is also a rational number so Q is closed w.r.t
		addition.	
	(ii)	Addition of rational numbers is alw	ways associative.
		i.e. $\forall a, b, c \in Q \Rightarrow (a+b) + c = a + b$	(b+c)
	(iii)	Here identity element is $0 \in Q$	
	(iv)	$\forall a \in Q$, the additive inverse is $-a$	$u \in Q$.
		Hence Q is a group under addition	
(iii)	Let Q	Q^+ = The set of positive rational numbers	bers
	(i)	As product of any two positive rat	ional numbers is also a positive rational number
		so Q^+ is closed w.r.t. multiplicatio	n.
	(ii)	Multiplication of positive rational	numbers is always associative.

Visit our website Last Hope Study For all Subjects notes with video 🕩 Explanation

86

Chapter – 2

Sets, Functions and Groups

i.e. $\forall a, b, c \in Q^+ \Longrightarrow (ab)c = a(bc)$

- (iii) Here identity element is $1 \in Q^+$
- (iv) $\forall a \in Q^+$, the multiplicative inverse is $\frac{1}{a} \in Q^+$

Hence Q^+ is a group under multiplication

- (iv) Let Z = The set of integers
 - (i) As sum of any two integers is also an integer so Z is closed w.r.t. addition.
 - (ii) Addition of integers is always associative

i.e. $\forall a, b, c \in Z \Longrightarrow (a+b) + c = a + (b+c)$

- (iii) Here identity element is $0 \in Z$
- (iv) $\forall a \in Z$, the additive inverse is $-a \in Z$. Hence Z is a group under addition
- (v) Let Z = The set of integers
 - (i) As product of any two integers is also an integer so Z is closed w.r.t. multiplication
 - (ii) Multiplication of integers is always associative i.e. $\forall a, b, c \in Z \Rightarrow (ab)c = a(bc)$
 - (iii) Here identity element is $1 \in Z$
 - (iv) Multiplicative inverse of any element of Z does not exist in Z except $\pm 1 \in Z$. Hence Z is not a group under multiplication.
- Q.4 Show that the adjoining table represents the sums of the elements of the set {E,O}. What is the identity element of this set? Show that this set is an abelian group.

\oplus	Е	0
Е	Е	0
0	0	E

Solution: Since the sum of two even integers is also an even integer, so E + E = E

The sum of an even and an odd integers is odd, i.e. E + O = O

The sum of two odd integers is also even, i.e. O + O = E

Hence given table represents the sums of the elements of the set $\{E, O\}$.

Now since E + E = E and E + O = O so E is the identity element.

Now we show that this is an abelian group.

- (i) Given set is closed under addition.
- (ii) Associative law of addition holds in given set. e.g. (E+O)+E=E+(O+E)

O + E = E + O

Chapter – 2

Sets, Functions and Groups

O = O

- (iii) Already proved that identity is E, so identity exists.
- (iv) The inverse of E is E.The inverse of O is O.so inverse of each element exists.
- (v) O + E = O = E + O so commutative law holds. Hence given set is an abelian group under addition.
- Q.5 Show that the set $\{1, \omega, \omega^2\}$, when $\omega^3 = 1$, is an Abelian group w. r. t. ordinary multiplication.

Solution: Let $G = \{1, \omega, \omega^2\}$

×	1	ω	ω^2
1	1	ω	ω^2
ω	ω	ω^2	1
ω^2	ω^2	1	ω

- (i) From the table it is clear that G is closed w.r.t. \times .
- (ii) Multiplication of complex numbers is associative and $G \subset C$, so associative law of multiplication holds in G.
- (iii) Identity element of G is 1
- (iv) Inverse of each element exists. Inverse of 1 is 1 Inverse of ω is ω^2
 - Inverse of ω^2 is ω
- (v) Multiplication of complex numbers is commutative and $G \subset C$, so commutative law of multiplication holds in *G* Hence *G* is an abelian group w.r.t. multiplication.
- **Q.6** If G is a group under operation * and $a, b \in G$, find the solutions of the equations

(i)
$$a * x = b$$

(ii) x * a = b

Solution:

(i) Since $a \in G$ and G is a group so $a^{-1} \in G$ Given a * x = b $\Rightarrow a^{-1} * (a * x) = a^{-1} * b$ $\Rightarrow (a^{-1} * a) * x = a^{-1} * b$ (Associative Law) $\Rightarrow e * x = a^{-1} * b$ $(a^{-1} * a = e)$

Visit our website Last Hope Study For all Subjects notes with video 🕒 Explanation

Chapter	[.] – 2
---------	------------------

Sets, Functions and Groups

$$\Rightarrow x = a^{-1} * b \qquad (e * x = x)$$

- (ii) Since $a \in G$ and G is a group so $a^{-1} \in G$ Given x * a = b $\Rightarrow (x * a) * a^{-1} = b * a^{-1}$ $\Rightarrow x * (a * a^{-1}) = b * a^{-1}$ (Associative Law) $\Rightarrow x * e = b * a^{-1}$ $(a * a^{-1} = e)$ $\Rightarrow x = b * a^{-1}$ (x * e = x)
- Q.7 Show that the set consisting of elements of the form $a + \sqrt{3}b$, (*a*,*b* being rational) is an abelian group w.r.t addition.

Solution: Let
$$G = \left\{ a + \sqrt{3}b \mid a, b \in Q \right\}$$

Let x, y, z be any three elements of G and

$$x = a + \sqrt{3}b$$
, $y = c + \sqrt{3}d$, $z = e + \sqrt{3}f$ where *a*, *b*, *c*, *d*, *e*, *f* are rational numbers.

(i)
$$x + y = (a + \sqrt{3}b) + (c + \sqrt{3}d)$$

$$=(a+c)+\sqrt{3}(b+d)\in G$$
 as $a+c,b+d\in Q$

So G is closed under addition.

(ii) Addition of real numbers is associative and $G \subset R$ so associative law of addition holds in G

(iii)
$$0 = 0 + \sqrt{3}(0)$$
 is the identity element in G.

(iv) For all
$$x = a + \sqrt{3}b \in G$$
, we have $-x = -a - \sqrt{3}b \in G$ such that
 $x + (-x) = (a + \sqrt{3}b) + (-a - \sqrt{3}b) = 0$. This shows that inverse of each element of *G* exists in *G*.

(v) Addition of real number is commutative and $G \subset R$ so commutative law of addition holds in G.

Hence G is an abelian group under addition

Q.8 Determine whether (P(S),*) where * stands for intersection is a semi-group, a monoid or neither. If it is a monoid, specify its identity.

Visit our website Last Hope Study For all Subjects notes with video **D** Explanation

Chapter – 2

Sets, Functions and Groups

- (i) Since the intersection of two subsets of S is also its subset and will be contained by P(S), so P(S) is closed.
- (ii) Intersection of sets is always associative.

i.e. $\forall A, B, C \in P(S) \Longrightarrow (A \cap B) \cap C = A \cap (B \cap C)$

(iii) For all $A \in P(S)$, $A \cap S = A$ (QA is a subset of S). This shows that the identity element is $S \in P(S)$.

This shows that (P(S), *) is a monoid having identity *S*.

Chapter – 2

Sets, Functions and Groups

Q.9 Complete the following table to obtain a semi-group under *.

*	а	b	С
а	С	а	b
b	а	b	С
С			а

Solution:

Let missing elements be p and q

	*	а	b	С	
	а	С	а	b	
	b	а	b	С	
	С	р	q	а	
p = c * a			q	= c *	b
= (a * a) * a (c = a * a)				=(a	(c = a * a)
=a*(a*a) (Associative La	ıw)			=a *	(a * b) (Associative Law)
= a * c				=a *	* a
= <i>b</i>				= <i>c</i>	

Q.10 Prove that all 2×2 non-singular matrices over the real field form a non-abelian group under multiplication.

Solution: Let G be the set of all 2×2 non-singular matrices over the real field.

- (i) As product of any two 2×2 matrices is again a matrix of order 2×2 , so G is closed under multiplication.
- (ii) Associative law of multiplication holds in matrices confirmable for multiplication. i.e. $\forall A, B, C \in G \Rightarrow (AB)C = A(BC)$.
- (iii) Since identity matrix of order 2×2 is also a non singular matrix, so $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in G$ is identity element in G.

(iv) The inverse of every 2×2 non-singular matrix exists and is given by $A^{-1} = \frac{AdjA}{|A|} \in G$, so inverse of every matrix of G exists.

(v) Commutative law of multiplication does not hold in matrices i.e. generally, $AB \neq BA$. So G is a non-abelian group under multiplication.