UN IT–1

Chapter – 2 Sets, Functions and Groups

Mathematics-11 Exercise - 2.8

Download All Subjects Notes from website (H) WWW.lasthopestudy.com

- **Q.1** Operation \oplus is performed on the two-member set $G = \{0,1\}$ is shown in the adjoining **table. Answer the questions.**
- **(i) Name the identity element if it exists.**

Solution: From the given table, $0+0=0$, $0+1=1$ which shows that 0 is the identity element.

(ii) What is the inverse of 1?

Solution: $1+1=0$ (identity) so inverse of 1 is 1.

(iii) Is the set G, under the given operation a group? Abelian or non-Abelian?

- **Solution:** The numbers in table satisfy all the properties of abelian group so G is an abelian group under addition.
- **Q.2** The operation \oplus as performed on the set $\{0,1,2,3\}$ is shown in the adjoining table,

show that the set is an abelian group.

Solution:

(i) Each element of the table is an element of the given set $\{0,1,2,3\}$, so closure law holds.

(ii) Associative law holds.

e.g.
$$
(1 + 2) + 3 = 1 + (2 + 3)
$$

 $3 + 3 = 1 + 1$

 $2 = 2$

- **(iii)** 0 is the identity element.
- **(iv)** The inverse of 0 is 0.
	- The inverse of 1 is 3.

The inverse of 2 is 2.

UN IT–1

Chapter – 2 Sets, Functions and Groups

i.e. $\forall a, b, c \in Q^+ \Rightarrow (ab)c = a(bc)$

(iii) Here identity element is $1 \in Q^+$

(iv)
$$
\forall a \in Q^+
$$
, the multiplicative inverse is $\frac{1}{a} \in Q^+$

Hence Q^+ is a group under multiplication

- (iv) Let $Z =$ The set of integers
	- **(i)** As sum of any two integers is also an integer so *Z* is closed w.r.t. addition.
	- **(ii)** Addition of integers is always associative Addition of integers is always associative
i.e. $\forall a,b,c \in Z \implies (a+b)+c = a+(b+c)$

- (iii) Here identity element is $0 \in Z$
- **(iv)** $\forall a \in \mathbb{Z}$, the additive inverse is $-a \in \mathbb{Z}$. Hence *Z* is a group under addition
- (v) Let $Z =$ The set of integers
	- **(i)** As product of any two integers is also an integer so *Z* is closed w.r.t. multiplication
	- **(ii)** Multiplication of integers is always associative i.e. $\forall a, b, c \in \mathbb{Z} \implies (ab)c = a(bc)$
	- (iii) Here identity element is $1 \in Z$
	- **(iv)** Multiplicative inverse of any element of Z does not exist in Z except $\pm 1 \in Z$. Hence Z is not a group under multiplication.
- **Q.4 Show that the adjoining table represents the sums of the elements of the set {E,O}.What is the identity element of this set? Show that this set is an abelian group.**

Solution: Since the sum of two even integers is also an even integer, so $E + E = E$

The sum of an even and an odd integers is odd, i.e. $E+O=O$

The sum of two odd integers is also even, i.e. $O + O = E$

Hence given table represents the sums of the elements of the set $\{E, O\}$.

Now since $E + E = E$ and $E + O = O$ so E is the identity element.

Now we show that this is an abelian group.

- **(i)** Given set is closed under addition.
- (ii) Associative law of addition holds in given set. e.g. $(E+O) + E = E + (O+E)$

 $Q + E = E + Q$

UN IT–1

Chapter – 2 Sets, Functions and Groups

88

 $Q = Q$

- **(iii)** Already proved that identity is E, so identity exists.
- **(iv)** The inverse of E is E. The inverse of O is O. so inverse of each element exists.
- **(v)** $O + E = O = E + O$ so commutative law holds. Hence given set is an abelian group under addition.
- **Q.5** Show that the set $\{1, \omega, \omega^2\}$, when $\omega^3 = 1$, is an Abelian group w. r. t. ordinary **multiplication.**

Solution: $G = \left\{1, \omega, \omega^2\right\}$

- (i) From the table it is clear that G is closed w.r.t. \times .
- (ii) Multiplication of complex numbers is associative and $G \subset C$, so associative law of multiplication holds in *^G* .
- **(iii)** Identity element of *G* is 1
- **(iv)** Inverse of each element exists. Inverse of 1 is 1 Inverse of ω is ω^2

Inverse of ω^2 is ω

(v) Multiplication of complex numbers is commutative and $G \subset C$, so commutative law of multiplication holds in *G* Hence G is an abelian group w.r.t. multiplication.

Q.6 If G is a group under operation $*$ and $a,b \in G$, find the solutions of the equations

- **(i)** $a * x = b$
- **(ii)** $x * a = b$

Solution:

(i) Since $a \in G$ and G is a group so $a^{-1} \in G$ Given $a * x = b$ $\Rightarrow a^{-1} * (a * x) = a^{-1} * b$ $\Rightarrow (a^{-1} * a) * x = a^{-1} * b$ $^{-1} * a$ | $* x = a$ (Associative Law) $\Rightarrow e * x = a^{-1} * b$ $(a^{-1} * a = e)$ $^{-1}$ * $a =$

Chapter – 2 Sets, Functions and Groups

$$
\Rightarrow x = a^{-1} * b \qquad (e * x = x)
$$

- (ii) Since $a \in G$ and G is a group so $a^{-1} \in G$ Given $x*a = b$ \Rightarrow $(x*a)*a^{-1} = b*a^{-1}$ $\Rightarrow x * (a * a^{-1}) = b * a^{-1}$ (Associative Law) \Rightarrow $x * e = b * a^{-1}$ $b * a^{-1}$ $(a * a^{-1} = e)$ \Rightarrow $x = b * a^{-1}$ $(x * e = x)$
- **Q.7** Show that the set consisting of elements of the form $a + \sqrt{3}b$, (a, b) being rational) is **an abelian group w .r .t addition.**

Solution: Let
$$
G = \{a + \sqrt{3}b \mid a, b \in Q\}
$$

Let x, y, z be any three elements of G and

$$
x = a + \sqrt{3}b
$$
, $y = c + \sqrt{3}d$, $z = e + \sqrt{3}f$ where a, b, c, d, e, f are rational numbers.

$$
(i) \qquad x + y = (a + \sqrt{3}b) + (c + \sqrt{3}d)
$$

$$
=(a+c)+\sqrt{3}(b+d)\in G \text{ as } a+c, b+d \in Q
$$

So G is closed under addition.

(ii) Addition of real numbers is associative and $G \subset R$ so associative law of addition holds in *G*

(iii)
$$
0=0+\sqrt{3}(0)
$$
 is the identity element in G.

- **(iv)** For all $x = a + \sqrt{3}b \in G$, we have $-x = -a \sqrt{3}b \in G$ such that $x + (-x) = (a + \sqrt{3}b) + (-a - \sqrt{3}b) = 0$. This shows that inverse of each element of G exists in *^G* .
- (v) Addition of real number is commutative and $G \subset R$ so commutative law of addition holds in *^G* .

Hence *G* is an abelian group under addition

Q.8 Determine whether $(P(S),*)$ where $*$ stands for intersection is a semi-group, a **monoid or neither. If it is a monoid, specify its identity.**

$$

Sets, Functions and Groups

- **(i)** Since the intersection of two subsets of *S* is also its subset and will be contained by P(S), so *P*(*S*) is closed.
- **(ii)** Intersection of sets is always associative.

intersection of sets is always associative.
i.e. $\forall A, B, C \in P(S) \Rightarrow (A \cap B) \cap C = A \cap (B \cap C)$

(iii) For all $A \in P(S)$, $A \cap S = A$ (QA is a subset of *S*). This shows that the identity element is $S \in P(S)$.

This shows that $\big(P(S), *\big)$ is a monoid having identity *S*.

UN IT–1

Chapter – 2 Sets, Functions and Groups

Q.9 Complete the following table to obtain a semi-group under .

Solution:

Let missing elements be *p* and *q*

Q.10 Prove that all 2×2 non-singular matrices over the real field form a non-abelian group under multiplication.

Solution: Let G be the set of all 2×2 non-singular matrices over the real field.

- (i) As product of any two 2×2 matrices is again a matrix of order 2×2 , so G is closed under multiplication.
- **(ii)** Associative law of multiplication holds in matrices confirmable for multiplication. i.e. $\forall A, B, C \in G \Rightarrow (AB)C = A(BC)$.
- (iii) Since identity matrix of order 2×2 is also a non singular matrix, so I_2 1 0 0 1 $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in G$ is identity element in *G* .

(iv) The inverse of every 2×2 non-singular matrix exists and is given by $A^{-1} = \frac{Adj A}{\frac{1}{2}} \in G$ *A* $^{-1} = \frac{1}{1}$ = $\frac{1}{1}$ = G , so inverse of every matrix of G exists.

(v) Commutative law of multiplication does not hold in matrices i.e. generally, $AB \neq BA$. So G is a non-abelian group under multiplication.