EXERCISE 2.10

Q.1 Find two positive integers whose sum is 30 and their product will be maximum.

Solution:

Let x and 30-x be two positive integers. Their product is x(30-x)

Let
$$f(x) = x(30-x)$$

= $30x - x^2$

Differentiate w.r.t "x".

$$f'(x) = 30 - 2x$$
 and $f''(x) = -2$

put
$$f'(x) = 0$$

$$30-2x=0 \Rightarrow x=15$$

At
$$x = 15$$
 $f''(x) = -2 < 0$

so f will be maximum

So the required two positive integers are 15 and 15.

Q.2 Divide 20 into two parts so that the sum of their squares will be minimum.

Solution:

Let the required two parts are x and 20-x then the sum of their squares

will be
$$x^2 + (20 - x)^2$$

Let
$$f(x) = x^2 + (20 - x)^2$$

Differentiate w.r.t "x".

$$f'(x) = 2x + 2(20 - x)(-1)$$

Put
$$f'(x) = 0$$

$$2x - 2(20 - x) = 0$$

$$\mathcal{Z}x = \mathcal{Z}(20-x)$$

$$x = 10$$

at
$$x=10$$
 $f''(x)=4>0$

so f(x) will be minimum

so one of the integers is 10

and other one is 20-10=10.

So the required two integers are 10 & 10.

Q.3Find two positive integers whose sum is 12 and the product of one with the square of the other will be maximum.

Solution:

Let two integers are x and 12-xthen the product of 12-x and the

square of x is
$$x^2(12-x)$$

Let
$$f(x) = x^2(12-x)$$

$$f(x)=12x^2-x^3$$

Differentiate w.r.t. 'x'

$$f'(x) = 24x - 3x^2$$
 and $f''(x) = 24 - 6x$

Put
$$f'(x) = 0$$

$$x(24-3x)=0$$

$$x = 0, x = 8$$

at
$$x = 0$$
, $f''(0) = 24 > 0$

So *f* will be minimum so we

discard this possibility

At
$$x=8$$
, $f''(8)=24-48=-24<0$

So f will be maximum

Hence the required integers are

$$x=8$$

$$12 - x = 12 - 8 = 4$$

The perimeter of a triangle is Q.4 16cm. If one side is of length 6cm, what are lengths of the other sides for maximum area of the triangle?

Solution:

Sum of lengths of unknown sides is 16-6=10cm

Let the lengths of unknown sides be x and 10-x.

If *A* is the area of triangle, then

$$s = \frac{6 + x + 10 - x}{2} \Rightarrow s = 8$$

$$A = \sqrt{(8)(8-6)(8-x)(8-10+x)}$$

By Hero's formula

$$A = \sqrt{(8)(2)(8-x)(-2+x)}$$

$$A = 4\sqrt{10x - x^2 - 16}$$

The maximum value of A depends on the function

$$f(x)=10x-x^2-16$$

Differentiate w.r.t "x"

$$f'(x) = 4\frac{1}{2\sqrt{10x-x^2-16}}(10-2x)$$

$$\frac{dA}{dx} = \frac{20 - 4x}{\sqrt{10x - x^2 - 16}}$$

Put
$$\frac{dA}{dx} = 0$$
 gives,

$$\frac{20-4x}{\sqrt{10x-x^2-16}}=0 \Rightarrow x=5$$

Now

$$\frac{d^2A}{dx^2} = 4 \frac{\sqrt{10x - x^2 - 16}(-1) - (5 - x) \frac{10 - 2x}{2\sqrt{10x - x^2 - 16}}}{10x - x^2 - 16}$$

at
$$x = 5$$
,

$$\frac{d^2A}{dx^2}\bigg|_{x=5} = \frac{-36}{(50-25-16)^{\frac{3}{2}}} = -\frac{4}{3} < 0$$

Since
$$\frac{d^2A}{dx^2}\Big|_{x=5}$$
 < 0

So A is maximum

So the lengths of unknown sides are 5 and 10-5=5

Q.5 Find the dimensions of a rectangle of largest area having perimeter 120cm.

Solution:

Let *x* be the length of rectangle and *y* be breadth of rectangle

then perimeter 2x + 2y = 120

or
$$x + y = 60$$

or
$$y = 60 - x$$

Let A be the area of rectangle,

then
$$A = xy$$

or
$$A = x(60-x)$$

$$A = 60x - x^2$$

Differentiate w.r.t. *x*

$$\frac{dA}{dx} = 60 - 2x$$

Put
$$\frac{dA}{dx} = 0$$
 \Rightarrow $60 - 2x = 0$

$$x = 30$$

And
$$\frac{d^2A}{dx^2} = -2$$

At
$$x = 30 \frac{d^2 A}{dx^2} = -2 < 0$$
,

So A is maximum

So length of rectangle is x = 30 and breadth 60 - x = 30

Q.6 Find the lengths of the sides of a variable rectangle having area $36cm^2$ when its perimeter is minimum.

Solution:

Let *x* and *y* be the lengths of sides of rectangle, then

Area =
$$xy = 36 \Rightarrow y = \frac{36}{x}$$

If *p* denotes the perimeter of rectangle then

$$p = 2x + 2y$$

$$p = 2\left(x + \frac{36}{x}\right) \qquad \left(\because y = \frac{36}{x}\right)$$

Differentiate w.r.t "x"

$$\frac{dp}{dx} = 2\left(1 - \frac{36}{x^2}\right)$$

put
$$\frac{dp}{dx} = 0$$
 gives

x = 6 (neglecting negative value)

now
$$\frac{d^2P}{dx^2} = 2 \left[-\frac{(-2)36}{x^3} \right]$$

at
$$x = 6$$
, $\frac{d^2 p}{dx^2}\Big|_{x=6} = \frac{2}{3} > 0$

Which shows that perimeter is minimum,

For
$$x = 6$$
, we get $y = \frac{36}{6} \Rightarrow y = 6$

So the rectangle having area $36cm^2$ will have minimum perimeter if length and breadth are 6cm and 6cm.

Q.7 A box with a square base and open top is to have a volume of 4 cubic dm. Find the dimensions of the box which will require the least material.

Solution:

Let *h* be the height of the box and x be the side of its square base, then $v(volume) = x^2h$

$$\Rightarrow x^2h = 4$$

or
$$h = \frac{4}{x^2}$$

if s is the surface area, then

$$s = x^2 + 4xh$$

$$s = x^2 + \frac{16}{x} \qquad \left(\because h = \frac{4}{x^2} \right)$$

Differentiate w.r.t "x",

$$\frac{ds}{dx} = 2x - \frac{16}{x^2}$$

Put
$$\frac{ds}{dx} = 0$$
 gives,

$$2x - \frac{16}{x^2} = 0$$

$$2x^3 - 16 = 0$$

$$x^3 - 8 = 0$$

$$\Rightarrow$$
 $x = 2$ (real value only)

Now
$$\frac{d^2s}{dx^2} = 2 + \frac{2(16)}{x^3}$$

at x=2

$$\left. \frac{d^2 s}{dx^2} \right|_{x=2} = 2 + \frac{2(16)}{2^3} > 0$$

So the required surface area is minimum at x = 2.

So the required dimensions are 2*dm*, 2*dm* and height 1*dm*.

Q.8 Find the dimensions of a rectangular garden having perimeter 80, if its area is to be maximum.

Solution:

Let *x*, *y* be the length and breadth of that rectangular garden,

Then its perimeter P = 2x + 2y = 80

$$\Rightarrow x + y = 40$$
$$y = 40 - x$$

Now if *A* be the area of rectangular garden then A = xy

or
$$A = x(40 - x)$$

Differentiate w.r.t "x",

$$\frac{dA}{dx} = 40 - 2x$$
 and $\frac{d^2A}{dx^2} = -2$

Put
$$\frac{dA}{dx} = 0$$

$$40 - 2x = 0$$

$$\Rightarrow x = 20$$

at
$$x = 20$$
 $\frac{d^2A}{dx^2} = -2 < 0$

so area will be maximum
So the dimensions are 20*cm* and 20*cm*.

Q.9 An open tank of square base of side *x* and vertical side is to be constructed to contain a given quantity of water. Find the depth in terms of *x* if the expense of lining the inside of the tank with lead will be least.

Solution:

Let the given quantity of water be 'q' cubic unit and 'h' be the depth of the tank, having square base of length x. So the volume of the tank = $= x^2h$

So
$$q = x^2 h \Rightarrow h = \frac{q}{x^2}$$

If *S* be the surface area of inside of the tank, then $s = x^2 + 4xh$

or
$$s = x^2 + 4x \left(\frac{q}{x^2}\right)$$

$$s = x^2 + \frac{4q}{x}$$

Differentiate w.r.t "x"

$$\frac{ds}{dx} = 2x - \frac{4q}{x^2}$$
 and $\frac{d^2s}{dx^2} = 2 + \frac{8q}{x^3}$

Put
$$\frac{ds}{dx} = 0$$
 gives $2x - \frac{q}{x^2} = 0$

$$\Rightarrow q = \frac{x^3}{2}$$

$$x^3 = 2q \Rightarrow x = \sqrt[3]{2q}$$

at
$$x = \sqrt[3]{2q}$$

$$\frac{d^2s}{dx^2} = 2 + \frac{8q}{x^3}$$

$$\frac{d^2s}{dx^2} = 2 + \frac{8q}{2q} > 0 \qquad \left(\because x^3 = 2q\right)$$

$$\frac{d^2s}{dx^2} > 0$$

so *s* is minimum (as required)

thus for least expense $h = \frac{q}{x^2} = \frac{x}{2}$

Q.10 Find the dimensions of the rectangle of maximum area which fit inside the semi-circle of radius 8cm as shown in the figure.

Solution:

Let *P* be the point on rectangle as shown in figure. Taking *O* as centre of semi-circle on the origin, the point

P will be
$$(x, \sqrt{64-x^2})$$
, if the length

of rectangle is taken to be 2x.

Let A be the area of rectangle, then

$$A = 2x\sqrt{64 - x^2}$$

Differentiate w.r.t 'x''.

$$\frac{dA}{dx} = 2x \frac{1(-2/x)}{2/\sqrt{64-x^2}} + \sqrt{64-x^2}.(2)$$

$$=2\sqrt{64-x^2}-\frac{2x^2}{\sqrt{64-x^2}}$$

$$=\frac{2(64-x^2)-2x^2}{\sqrt{64-x^2}}$$

Put
$$\frac{dA}{dx} = 0 \Rightarrow \frac{128 - 2x^2 - 2x^2}{\sqrt{64 - x^2}} = 0$$

$$128 - 4x^2 = 0$$

$$x^2 = 32$$

$$x = 4\sqrt{2}$$

(neglecting negative value of x)

Now
$$\frac{d^2A}{dx^2} = \frac{4x(x^2 - 96)}{(64 - x^2)^{\frac{3}{2}}}$$

(after simplification)

At
$$x = 4\sqrt{2}$$

$$\left. \frac{d^2 A}{dx^2} \right|_{x=4\sqrt{2}} = \frac{16\sqrt{2} \left(-64\right)}{\left(32\right)^{\frac{3}{2}}} < 0$$

So the area of rectangle will be maximum if $x = 4\sqrt{2}$.

Q.11 Find the point on the curve $y = x^2 - 1$ that is closest to the point (3,-1)

Solution:

Let ℓ be the distance between the point (3,-1) and a point (x,y) on

the curve
$$y = x^2 - 1$$

Then
$$l = \sqrt{(x-3)^2 + (y+1)^2}$$

$$= \sqrt{(x-3)^2 + (x^2 - 1 + 1)^2}$$

$$l = \sqrt{(x-3)^2 + x^4}$$

The minimum value of l depends on the function

$$l = (x-3)^2 + x^4$$

Differentiate w.r.t "x"

$$\frac{dl}{dx} = 2(x-3) + 4x^3 \text{ and } \frac{d^2l}{dx^2} = 12x^2 + 2$$
Put $\frac{dl}{dx} = 0$,
$$4x^3 + 2x - 6 = 0$$

$$(2x^2 + 2x - 3)(x - 1) = 0$$

$$2x^2 + 2x - 3 = 0$$
 gives no real roots
So $x - 1 = 0 \Rightarrow x = 1$

At
$$x=1$$
 $\frac{d^2l}{dx^2} = 12(1)^2 + 2 = 14$ $\frac{d^2l}{dx^2} > 0$

So l has minimum value at x=1

Put
$$x = 1$$
 in $y = x^2 - 1$
 $y = 0$

Hence the required point on the curve is (1,0)

Q.12 Find the point on the curve $y = x^2 + 1$ that is closest to the point (18,1)

Solution:

let *l* be the distance between the point (18,1) and a point (x, y) on the curve $y = x^2 + 1$ then.

$$l = \sqrt{(x-18)^2 + (y-1)^2}$$

$$= \sqrt{(x-18)^2 + (y-1)^2}$$

$$(\because x^2 + 1 = y)$$

$$= \sqrt{(x-18)^2 + x^4}$$

The minimum value of l depends on the function

$$l = (x-18)^2 + x^4$$

Differentiate w.r.t "x"

$$\frac{dl}{dx} = 2(x-18) + 4x^3 \text{ and } \frac{d^2l}{dx^2} = 12x^2 + 2$$

$$Put \frac{dl}{dx} = 0$$

$$2x^3 + x - 18 = 0$$

$$(x-2)(2x^2 + 4x + 9) = 0$$

 $2x^2 + 4x + 9 = 0$ gives complex roots so, we must have $x - 2 = 0 \implies x = 2$

At
$$x=2$$
 $\frac{d^2l}{dx^2} = 12(2)^2 + 2 = 50$

So *l* has minimum value at x = 2put x = 2 in $y = x^2 + 1$ we get

$$y = 2^2 + 1 = 5$$

Hence the required point on the curve is (2,5).