EXERCISE 2.8

Q.1 Apply the Maclaurin series expansion to prove that:

(i)
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$$

Solution:

Let

$$f(x) = \ln(1+x)$$
 and $f(0) = 0$

$$f'(x) = \frac{1}{1+x}$$
 and $f'(0) = 1$

$$f''(x) = \frac{-1}{(1+x)^2}$$
 and $f''(0) = -1$

$$f'''(x) = \frac{2}{(1+x)^3}$$
 and $f'''(0) = 2$

$$f^{iv}(x) = \frac{-6}{(1+x)^4}$$
 and $f^{iv}(0) = -6$

Applying Maclaurin's series expansion,

$$f(x) = f(0) + \frac{f'(0)x}{\underline{1}} + \frac{f''(0)x^2}{\underline{1}} + \frac{f'''(0)x^3}{\underline{1}} + \dots$$

$$\ln\left(1+x\right) = 0 + \frac{1}{\underline{1}}x + \frac{-1}{\underline{2}}x^2 + \frac{2}{\underline{3}}x^3 + \dots$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$$

Prove that $\cos x = 1 - \frac{x^2}{12} + \frac{x^4}{14} - \frac{x^6}{16} + \dots$ (ii)

Solution:

Let
$$f(x) = \cos x$$
 and $f(0) = 1$

$$f'(x) = -\sin x$$
 and $f'(0) = 0$

$$f''(x) = -\cos x$$
 and $f''(0) = -1$

$$f'''(x) = \sin x$$
 and $f'''(0) = 0$

$$f^{iv}(x) = \cos x$$
 and $f^{iv}(0) = 1$

$$f^{\nu}(x) = -\sin x$$
 and $f^{\nu}(0) = 0$

$$f^{vi}(x) = -\cos x$$
 and $f^{vi}(0) = -1$

Applying Maclaurin's series expansion,

$$f(x) = f(0) + \frac{f'(0)}{\underline{1}}x + \frac{f''(0)}{\underline{2}}x^2 + \frac{f'''(0)}{\underline{3}}x^3 + \dots$$

$$\cos x = 1 + \frac{0}{\underline{1}}x + \frac{-1}{\underline{2}}x^2 + \frac{0}{\underline{3}}x^3 + \frac{1}{\underline{1}}x^4 + \dots$$

$$\cos x = 1 - \frac{x^2}{\underline{12}} + \frac{x^4}{\underline{14}} - \frac{x^6}{\underline{16}} + \dots$$

$$\sqrt{1 + x} = 1 + \frac{x}{\underline{1}} + \frac{x^2}{\underline{1}} + \frac{x^3}{\underline{1}} + \dots$$

(iii)
$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} + \dots$$

Solution:

Let
$$f(x) = \sqrt{1+x}$$
 and $f(0) = 1$
 $f'(x) = \frac{1}{2\sqrt{1+x}}$ and $f'(0) = \frac{1}{2}$
 $f''(x) = \frac{-1}{4(1+x)^{\frac{3}{2}}}$ and $f''(0) = \frac{-1}{4}$
 $f'''(x) = \frac{3}{8(1+x)^{\frac{5}{2}}}$ and $f'''(0) = \frac{3}{8}$
 $f^{iv}(x) = \frac{-15}{16(1+x)^{\frac{7}{2}}}$ and $f^{iv}(0) = \frac{-15}{16}$

Applying Maclaurin's series expansion,

$$f(x) = f(0) + \frac{f'(0)}{2}x + \frac{f''(0)}{2}x^{2} + \frac{f'''(0)}{2}x^{3} + \dots$$

$$\sqrt{1+x} = 1 + \frac{1}{2}x + \frac{-\frac{1}{4}}{2}x^{2} + \frac{\frac{3}{8}}{2}x^{3} + \dots$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^{2}}{8} + \frac{x^{3}}{16} + \dots$$

(iv)
$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \dots$$

Solution:

Let
$$f(x) = e^x$$
 and $f(0) = 1$
 $f'(x) = e^x$ and $f'(0) = 1$
 $f''(x) = e^x$ and $f''(0) = 1$
 $f'''(x) = e^x$ and $f'''(0) = 1$

Applying Maclaurin's series expansion,

$$f(x) = f(0) + \frac{f'(0)}{\underline{1}}x + \frac{f''(0)}{\underline{2}}x^{2} + \frac{f'''(0)}{\underline{3}}x^{3} + \dots$$

$$e^{x} = 1 + \frac{1}{\underline{1}}x + \frac{1}{\underline{2}}x^{2} + \frac{1}{\underline{3}}x^{3} + \dots$$

$$\Rightarrow e^{x} = 1 + x + \frac{x^{2}}{\underline{2}} + \frac{x^{3}}{\underline{3}} + \dots$$

$$e^{2x} = 1 + 2x + \frac{4x^{2}}{\underline{2}} + \frac{8x^{3}}{\underline{3}} + \dots$$

Solution:

$$f(x) = e^{2x}$$
 and $f(0) = 1$
 $f'(x) = 2e^{2x}$ and $f'(0) = 2$
 $f''(x) = 4e^{2x}$ and $f''(0) = 4$
 $f'''(x) = 8e^{2x}$ and $f'''(0) = 8$
 $f^{iv}(x) = 16e^{2x}$ and $f^{iv}(0) = 16$

Applying Maclaurin's series expansion,

Apprying Maciaurin's series expansion,
$$f(x) = f(0) + f'\frac{(0)}{2}x + f''\frac{(0)}{2}x^2 + f'''\frac{(0)}{2}x^3 + \dots$$

$$e^{2x} = 1 + 2x + \frac{4x^2}{2} + \frac{8x^3}{3} + \dots$$

Q.2 Show that
$$\cos(x+h) = \cos x - h \sin x - \frac{h^2}{2} \cos x + \frac{h^3}{3} \sin x + ...$$

and evaluate cos61°.

Solution:

Let
$$f(x+h) = \cos(x+h)$$

 $\Rightarrow f(x) = \cos x$
 $f'(x) = -\sin x$ and $f''(x) = -\cos x$
 $f'''(x) = \sin x$ and $f^{iv}(x) = \cos x$
Applying Tailor's Theorem, we have
$$f(x+h) = f(x) + \frac{h}{2} f'(x) + \frac{h^2}{2} f''(x) + \frac{h^3}{3} f'''(x) + \dots$$

$$\cos(x+h) = \cos x - h \sin x + \frac{h^2}{2} \cos x - \frac{h^3}{3} \sin x + \dots$$
For $x = 60^\circ$ and $h = 1^\circ$ or $h = 0.017455$

$$\cos(60^\circ + 1^\circ) = \cos 60^\circ - (0.017455) \sin 60^\circ - \frac{(0.017455)^2}{2} \cos 60^\circ + \frac{(0.017455)^3}{3} \sin 60^\circ$$

$$\cos 61^{\circ} = \frac{1}{2} - \frac{\sqrt{3}}{2} (0.017455) - \frac{1}{4} (0.017455)^{2} + \frac{\sqrt{3}}{12} (0.017455)^{3}$$

$$\approx 0.5 - 0.015116 - 0.0000761 + 0.00000076$$

$$\approx 0.4848$$

Q.3 Show that
$$2^{x+h} = 2^x \left[1 + (\ln 2)h + \frac{(\ln 2)^2}{2}h^2 + \frac{(\ln 2)^3}{3}h^3 + \dots \right]$$

Solution:

Let
$$f(x+h) = 2^{x+h}$$

 $\Rightarrow f(x) = 2^{x}$
 $f'(x) = 2^{x}(\ln 2)$ and $f''(x) = 2^{x}(\ln 2)^{2}$
 $f'''(x) = 2^{x}(\ln 2)^{3}$ and $f^{iv}(x) = 2^{x}(\ln 2)^{4}$

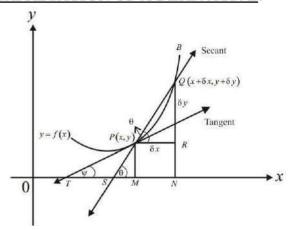
Applying Taylor's Theorem

$$f(x+h) = f(x) + \frac{h}{12}f'(x) + \frac{h^2}{12}f''(x) + \frac{h^3}{13}f'''(x) + \dots$$

$$2^{x+h} = 2^x + \frac{h}{\underline{1}} \cdot 2^x (\ln 2) + \frac{h^2}{\underline{1}} 2^x (\ln 2)^2 + \dots$$

$$2^{x+h} = 2^x \left[1 + (\ln 2)h + (\ln 2)^2 \frac{h^2}{2} + (\ln 2)^3 \frac{h^3}{3} + \dots \right]$$

GEOMETRICAL INTERPRETATION OF A DERIVATIVE:



Let P(x,y) and $Q(x+\delta x,y+\delta y)$ be two neighboring points on the graph of the function defined by the equation y=f(x). The line PQ is a secant to the curve. Its inclination is θ . TP is the tangent to the curve at point P. Its inclination is ψ In ΔPQR

$$\tan \theta = \frac{QR}{PR} = \frac{\delta y}{\delta x}$$

Applying limit $\delta x \to 0$, the secant will become the tangent at P and θ will tend to ψ .

$$\lim_{\delta x \to 0} \tan \theta = \lim_{\delta x \to 0} \frac{\delta y}{\delta x}$$

$$\tan \theta = \frac{dy}{dx}$$

The derivative w.r.t 'x' of the function defined by the equation y = f(x) is equal to the slope of the tangent to the graph of the function at point P(x, y).

INCREASING AND DECREASING FUNCTIONS:

Let f be defined on interval (a,b) and let $x_1, x_2 \in (a,b)$ then

- (i) f is increasing on the interval (a,b) if $f(x_2) > f(x_1)$ whenever $x_2 > x_1$
- (ii) f is decreasing on the interval (a,b) if $f(x_2) < f(x_1)$ whenever $x_2 > x_1$

Note:

- (i) A differentiable function f is increasing on (a,b) if tangent lines to its graph at all points (x, f(x)) have positive slopes i.e. f'(x) > 0, $\forall x \in (a,b)$.
- (ii) A differentiable function f is decreasing on (a,b) if tangent lines to its graph at all points (x, f(x)) have negative slopes i.e. f'(x) < 0, $\forall x \in (a,b)$.

 $f'(x) < 0 \ \forall x \text{ such that } a < x < b$

Stationary Point:

A point where f is neither increasing nor decreasing is called a stationary point, provided that f'(x) = 0 at that point.

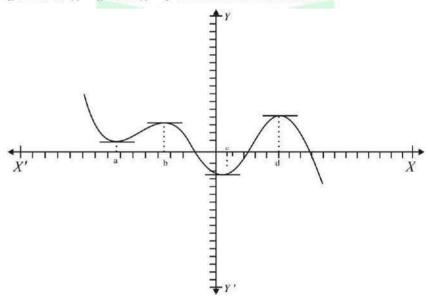
RELATIVE EXTREMA:

Let $(c-\delta x,c+\delta x)\subseteq D_f$ (domain of a function f) where δx is small positive number If $f(c)\geq f(x) \ \forall x\in (c-\delta x,c+\delta x)$ then the function f is said to have a relative maxima at x=c

If $f(c) \le f(x) \forall x \in (c - \delta x, c + \delta x)$ then the function f has relative minima at x = c.

Both relative maximum and minimum are called relative extrema (in general).

The graph of a function is shown in the adjoining figure. It has relative maxima at x = b and x = d. But at x = a and x = c it has relative minima.



Critical Values and Critical Points:

If $c \in D_f$ and f'(c) = 0 or f'(c) does not exist then the number f(c) is called a critical value of f while the point (c, f(c)) on the graph of f(x) is named as a critical point.

There are functions which have extrema (maxima or minima) at the points where their derivatives do not exist.

First derivative rule:

Let f(x) f be differentiable in neighbourhood of c where f'(c) = 0

- (i) If f'(x) changes sign from positive to negative as x increases through c then f(c) is the relative maxima of f(x).
- (ii) If f'(x) changes sign from negative to positive as x increases through c then f(c) is the relative minima of f(x).