Mathematics 12

Unit 2 - Differentiation (Exercise 2.9)

Second Derivative Rule:

Let f(x) be a differentiable function in neighborhood of c where f'(c) = 0 then

- f(x) has relative maxima at c if f''(c) < 0
- f(x) has relative minima at c if f''(c) > 0. (ii)

Note:

- A stationary point is called a turning point if it is either a maximum point or a (i) minimum point.
- If f'(x) > 0 before the point (ii) x = a, f'(x) = 0 at x = aand f'(x) > 0 after x = athen f does not has a relative maxima. Such a point of the function is called the point of inflection.

EXERCISE 2.9

Q.1 Determine the intervals in which f is increasing or decreasing for the domain mentioned in each case.

(i)
$$f(x) = \sin x, x \in (-\pi, \pi)$$

Solution:

$$f(x) = \sin x$$

Differentiate w.r.t. "x"

$$f'(x) = \cos x$$

Put
$$f'(x) = 0$$

$$\cos x = 0$$

$$\Rightarrow x = -\frac{\pi}{2}, \frac{\pi}{2}$$

Intervals are
$$\left(-\pi, -\frac{\pi}{2}\right), \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

and
$$\left(\frac{\pi}{2},\pi\right)$$

For
$$\left(-\pi, -\frac{\pi}{2}\right)$$
; $f'(x) = \cos x < 0$

So *f* is decreasing

For
$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
; $f'(x) = \cos x > 0$

So *f* is increasing.

For
$$\left(\frac{\pi}{2}, \pi\right)$$
; $f'(x) = \cos x < 0$

So *f* is decreasing

(ii)
$$f(x) = \cos x, x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$$

Solution:

$$f(x) = \cos x$$

Differentiate w.r.t. "x"

$$f'(x) = -\sin x$$

Put
$$f'(x) = 0$$

$$-\sin x = 0$$

$$\Rightarrow x = 0$$

Intervals are
$$\left(-\frac{\pi}{2},0\right)$$
 and $\left(0,\frac{\pi}{2}\right)$

For
$$\left(-\frac{\pi}{2},0\right)$$
; $f'(x) = -\sin x > 0$

So f is increasing

For
$$\left(0, \frac{\pi}{2}\right)$$
; $f'(x) = -\sin x < 0$

So f is decreasing

(iii)
$$f(x) = 4 - x^2$$
, $x \in (-2,2)$

Solution:

$$f(x) = 4 - x^2$$

Differentiate w.r.t. "x"

$$f'(x) = -2x$$

Put
$$f'(x) = 0$$

$$-2x = 0$$

$$x = 0$$

Intervals are (-2,0) and (0,2)

For
$$(-2,0)$$
; $f'(x) = -2x > 0$

So *f* is increasing

For
$$(0,2)$$
; $f'(x) = -2x < 0$

So *f* is decreasing

(iv)
$$f(x) = x^2 + 3x + 2, x \in (-4,1)$$

Solution:

$$f(x) = x^2 + 3x + 2$$

Differentiate w.r.t. "x"

$$f'(x) = 2x + 3$$

Put
$$f'(x) = 0$$

$$2x+3=0$$

$$x = -\frac{3}{2}$$

Intervals are
$$\left(-4, \frac{-3}{2}\right)$$
 and $\left(\frac{-3}{2}, 1\right)$

For
$$\left(-4, -\frac{3}{2}\right)$$
; $f'(x) = 2x + 3 < 0$

So *f* is decreasing

For
$$\left(-\frac{3}{2},1\right)$$
; $f'(x) = 2x + 3 > 0$

So f is increasing

Q.2 Find the extreme values for the following functions defined as,

(i)
$$f(x) = 1 - x^3$$

Solution:

$$f(x)=1-x^3$$

Differentiate w.r.t. "x"

$$f'(x) = -3x^2$$

Put
$$f'(x) = 0$$

$$-3x^2 = 0 \Rightarrow x = 0$$

Now
$$f''(x) = -6x$$

Putting x = 0,

$$f''(0) = 0$$

So the second derivative is not helpful in determining the extreme values.

Now we use first derivative test.

Let
$$x = 0 - \varepsilon$$

and
$$f'(0-\varepsilon) = -3(0-\varepsilon)^2$$

$$=-3\varepsilon^2<0$$

and
$$f'(0+\varepsilon) = -3(0+\varepsilon)^2$$

$$=-3\varepsilon^2<0$$

So the first derivative does not change sign at x = 0 and f(x) = 1,

(0,1) is the point of inflexion.

(ii)
$$f(x) = x^2 - x - 2$$

Solution:

$$f(x) = x^2 - x - 2$$

Differentiate w.r.t. "x"

$$f'(x) = 2x-1$$

Put
$$f'(x)=0 \Rightarrow 2x-1=0$$

we get
$$x = \frac{1}{2}$$

take
$$f'(x) = 2x - 1$$

Differentiate again w.r.t. "x"

$$f''(x)=2$$

at
$$x = \frac{1}{2}$$

$$f''(x) = 2 > 0$$

so *f* has relative minima at $x = \frac{1}{2}$

and
$$f\left(\frac{1}{2}\right) = \frac{-9}{4}$$

(iii)
$$f(x) = 5x^2 - 6x + 2$$

Solution:

$$f(x) = 5x^2 - 6x + 2$$

Differentiate w.r.t. "x"

$$f'(x) = 10x - 6$$

Put
$$f'(x) = 0 \Rightarrow 10x - 6 = 0$$

we get
$$x = \frac{3}{5}$$

take
$$f'(x) = 10x - 6$$

Differentiate again w.r.t. "x"

$$f''(x) = 10$$

at
$$x = \frac{3}{5}$$

$$f''(x) = 10 > 0$$

So *f* has relative minima at $x = \frac{3}{5}$

$$f\left(\frac{3}{5}\right) = 5\left(\frac{3}{5}\right)^2 - 6\left(\frac{3}{5}\right) + 2$$
$$= \frac{9}{5} - \frac{18}{5} + 2$$
$$9 - 18 + 10$$

$$=\frac{9-18+10}{5}$$

$$f\left(\frac{3}{5}\right) = \frac{1}{5}$$

(iv)
$$f(x) = 3x^2$$

Solution:

$$f(x) = 3x^2$$

Differentiate w.r.t. "x"

$$f'(x) = 6x$$

Put
$$f'(x) = 0 \Rightarrow 6x = 0$$

We get
$$x = 0$$

take
$$f'(x) = 6x$$

Differentiate again w.r.t. "x"

$$f''(x) = 6$$

at
$$x = 0$$

$$f''(x) = 6 > 0$$

So f(x) has minimum value

and
$$f(0) = 0$$

(v)
$$f(x) = 2x^3 - 2x^2 - 36x + 3$$

Solution:

$$f(x) = 2x^3 - 2x^2 - 36x + 3$$

Differentiate w.r.t. "x"

$$f'(x) = 6x^2 - 4x - 36$$

Put
$$f'(x) = 0$$

$$6x^2 - 4x - 36 = 0$$

$$\Rightarrow \qquad x = \frac{1 \pm \sqrt{55}}{3}$$

Take
$$f'(x) = 6x^2 - 4x - 36$$

Differentiate again w.r.t. "x"

Now
$$f''(x) = 12x - 4$$

At
$$x = \frac{1 + \sqrt{55}}{3}$$

$$f''\left(\frac{1+\sqrt{55}}{3}\right) = 12\left(\frac{1+\sqrt{55}}{3}\right) - 4$$

$$=4+4\sqrt{55}-4=4\sqrt{55}>0$$

Thus f has relative minima

$$f\left(\frac{1+\sqrt{55}}{3}\right) = 2\left(\frac{1+\sqrt{55}}{3}\right)^3 - 2\left(\frac{1+\sqrt{55}}{3}\right)^2 - 36\left(\frac{1+\sqrt{55}}{3}\right) + 3$$
$$f\left(\frac{1+\sqrt{55}}{3}\right) = \frac{-1}{27}\left(247 + 220\sqrt{55}\right)$$

at
$$x = \frac{1 - \sqrt{55}}{3}$$

$$f''\left(\frac{1-\sqrt{55}}{3}\right) = -4\sqrt{55} < 0$$

So f has relative maxima

$$f\left(\frac{1-\sqrt{55}}{3}\right) = 2\left(\frac{1-\sqrt{55}}{3}\right)^3 - 2\left(\frac{1-\sqrt{55}}{3}\right)^2 - 36\left(\frac{1-\sqrt{55}}{3}\right) + 3$$
$$f\left(\frac{1-\sqrt{55}}{3}\right) = \frac{-1}{27}\left(247 - 220\sqrt{55}\right)$$

(vi)
$$f(x) = x^4 - 4x^2$$

Solution:

$$f(x) = x^4 - 4x^2$$

Differentiate w.r.t. "x"

$$f'(x) = 4x^3 - 8x$$

Put
$$f'(x) = 0$$

$$4x^3 - 8x = 0$$

$$x = 0$$
, $x = \sqrt{2}$, $x = -\sqrt{2}$

Take
$$f'(x) = 4x^3 - 8x$$

Differentiate again w.r.t. "x"

$$f''(x) = 12x^2 - 8$$

at
$$x = -\sqrt{2}$$

$$f''(-\sqrt{2}) = 12(-\sqrt{2})^2 - 8$$

$$f''(-\sqrt{2}) = 24 - 8$$

$$f''(-\sqrt{2}) = 16 > 0$$

So *f* has relative minima

at
$$x = 0$$
, $f''(0) = -8 < 0$

so f has relative maxima at x = 0

at
$$x = \sqrt{2}$$
, $f''(\sqrt{2}) = 11 > 0$

so *f* has relative minima at $x = \sqrt{2}$

and
$$f(\sqrt{2}) = f(-\sqrt{2}) = -4$$

also
$$f(0) = 0$$

(vii) $f(x) = (x-2)^2 (x-1)$

Solution:

$$f(x) = (x-2)^2(x-1)$$

$$f(x) = (x^2 - 4x + 4)(x-1)$$

$$f(x) = x^3 - 5x^2 + 8x - 4$$

Differentiate w.r.t. "x"

$$f'(x) = 3x^2 - 10x + 8$$

Put
$$f'(x) = 0$$

$$3x^2 - 10x + 8 = 0$$

$$\Rightarrow x = 2, \qquad x = \frac{4}{3}$$

Take
$$f'(x) = 3x^2 - 10x + 8$$

Differentiate again w.r.t. "x"

$$f''(x) = 6x - 10$$

at
$$x = 2$$
,

$$f''(2) = 2 > 0$$

So *f* has relative minima

and
$$f(2)=0$$

at
$$x = \frac{4}{3}$$

$$f''\left(\frac{4}{3}\right) = -2 < 0$$

So *f* has relative minima

And

$$f\left(\frac{4}{3}\right) = \left(\frac{4}{3}\right)^3 - 5\left(\frac{4}{3}\right)^2 + 8\left(\frac{4}{3}\right) - 4$$
$$= \frac{64}{27} - \frac{80}{9} + \frac{32}{3} - 4$$

$$f\left(\frac{4}{3}\right) = \frac{4}{27}$$

(viii)
$$f(x) = 5 + 3x - x^3$$

Solution:

$$f(x) = 5 + 3x - x^3$$

Differentiate w.r.t. "x"

$$f'(x) = 3 - 3x^2$$

put
$$f'(x) = 0$$

$$3 - 3x^2 = 0$$

$$\Rightarrow x = \pm 1$$

Take
$$f'(x) = 3 - 3x^2$$

Differentiate again w.r.t. "x"

$$f''(x) = -6x$$

at
$$x = -1$$
, $f''(-1) = 6 > 0$

So f has relative minima

And
$$f(-1)=3$$

At
$$x=1$$
, $f''(1)=-6<0$

So f has relative maxima

And
$$f(1) = 7$$

Q.3 Find the maximum and minimum values of the function defined by the following equation occurring in the interval $[0,2\pi]$

$$f(x) = \sin x + \cos x$$

Solution:

$$f(x) = \sin x + \cos x$$

Differentiate w.r.t. "x"

$$f'(x) = \cos x - \sin x$$

Put
$$f'(x) = 0$$

$$\cos x - \sin x = 0$$

$$\sin x = \cos x \implies \tan x = 1$$

$$x = \frac{\pi}{4} \& x = \pi + \frac{\pi}{4} = \frac{5\pi}{4}$$

Take $f'(x) = \cos x - \sin x$

Differentiate again w.r.t. "x"

$$f''(x) = -\sin x - \cos x$$

At
$$x = \frac{\pi}{4}$$

$$f''\left(\frac{\pi}{4}\right) = -\sin\frac{\pi}{4} - \cos\frac{\pi}{4}$$

$$=\frac{-1}{\sqrt{2}}-\frac{1}{\sqrt{2}}=-\frac{2}{\sqrt{2}}$$

$$=-\sqrt{2}<0$$

So *f* has maximum value

And

$$f\left(\frac{\pi}{4}\right) = \sin\frac{\pi}{4} + \cos\frac{\pi}{4} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}}$$
$$f\left(\frac{\pi}{4}\right) = \sqrt{2}$$
At $x = \frac{5\pi}{4}$

$$f''\left(\frac{5\pi}{4}\right) = -\sin\frac{5\pi}{4} - \cos\frac{5\pi}{4}$$

$$=\sqrt{2}>0$$

So *f* has minimum value

and
$$f\left(\frac{5\pi}{4}\right) = \sin\frac{5\pi}{4} + \cos\frac{5\pi}{4}$$

$$f\left(\frac{5\pi}{4}\right) = -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}$$

$$f\left(\frac{5\pi}{4}\right) = \frac{-1-1}{\sqrt{2}} = \frac{-2}{\sqrt{2}}$$

$$f\left(\frac{5\pi}{4}\right) = -\sqrt{2}$$

So maximum and minimum values of f(x) are $\sqrt{2}$ and $-\sqrt{2}$ respectively.

Q.4 Show that $y = \frac{\ln x}{x}$ has maximum

value at x = e

Solution:

$$y = \frac{\ln x}{x}$$

Differentiate w.r.t "x"

$$\frac{dy}{dx} = \frac{x\left(\frac{1}{x}\right) - \ln x(1)}{x^2}$$

$$\frac{dy}{dx} = \frac{1 - \ln x}{x^2}$$

Put
$$\frac{dy}{dx} = 0$$

$$\frac{1-\ln x}{x^2}=0$$

$$1 - \ln x = 0$$

 $\ln x = 1 \Rightarrow \ln x = \ln e$

$$\Rightarrow x = e$$

Take
$$\frac{dy}{dx} = \frac{1 - \ln x}{x^2}$$

Differentiate again w.r.t. "x"

$$\frac{d^2y}{dx^2} = \frac{x^2 \left(-\frac{1}{x}\right) - (1 - \ln x)(2x)}{x^4}$$

$$\frac{d^2y}{dx^2} = \frac{-x - 2x(1 - \ln x)}{x^4}$$

$$\frac{d^2y}{dx^2} = \frac{-3x + 2x \ln x}{x^4}$$

$$\frac{d^2y}{dx^2} = \frac{-3 + 2\ln x}{x^3}$$

at
$$x = e$$

$$\left. \frac{d^2 y}{dx^2} \right|_{x=e} = \frac{-3 + 2\ln e}{e^3}$$
$$= \frac{-1}{e^3} < 0$$

$$\left. \frac{d^2 y}{dx^2} \right|_{y=e} < 0$$

so f has maximum value at x = e.

Q.5 Show that $y = x^x$ has minimum

value at
$$x = \frac{1}{e}$$

Solution:

$$y = x^x$$

Taking natural log on both sides

$$ln y = ln x^x$$

$$\ln y = x \ln x$$

Differentiate w.r.t. "*x*"

$$\frac{1}{y}\frac{dy}{dx} = x.\frac{1}{x} + \ln x(1)$$

$$\frac{1}{y}\frac{dy}{dx} = 1 + \ln x$$

$$\frac{dy}{dx} = y(1 + \ln x) \Rightarrow \frac{dy}{dx} = x^{x}(1 + \ln x)$$

Put
$$\frac{dy}{dx} = 0$$

$$\Rightarrow x^{x}(1+\ln x)=0$$

$$\Rightarrow 1 + \ln x = \therefore x^x \neq 0$$

$$\ln x = -1$$

$$\ln x = -\ln e$$

$$(:: \ln e = 1)$$

$$\ln x = \ln e^{-1}$$

$$\ln x = \ln \left(\frac{1}{e} \right)$$

$$\Rightarrow x = \frac{1}{e}$$

Take
$$\frac{dy}{dx} = x^x (1 + \ln x)$$

Differentiate again w.r.t. "x"

$$\frac{d^2y}{dx^2} = x^x \left(\frac{1}{x}\right) + \left(1 + \ln x\right)x^x \left(1 + \ln x\right)$$

$$\frac{d^2y}{dx^2} = \frac{x^x}{x} + x^x (1 + \ln x)^2$$

$$\frac{d^2y}{dx^2} = x^x \left(\frac{1}{x} + \left(1 + \ln x\right)^2\right)$$

at
$$x = \frac{1}{e}$$

$$\left. \frac{d^2 y}{dx^2} \right|_{x=\frac{1}{e}} = \left(\frac{1}{e}\right)^{\frac{1}{e}} \left[\frac{1}{\frac{1}{e}} + \left(1 + \ln \frac{1}{e}\right)^2 \right]$$

$$\left. \frac{d^2 y}{dx^2} \right|_{x=\frac{1}{e}} = \left(\frac{1}{e} \right)^{\frac{1}{e}} \left[e + (1 + \ln 1 - \ln e)^2 \right]$$

$$\left. \frac{d^2 y}{dx^2} \right|_{x=\frac{1}{e}} = e \left(\frac{1}{e} \right)^{\frac{1}{e}} > 0$$

$$\left. \frac{d^2 y}{dx^2} \right|_{x=\frac{1}{e}} > 0$$

 \therefore $y = x^x$ has minimum value at

$$x = \frac{1}{e}$$