	Chapter 14: Electromagnetism						
Ch Download All Subject	Physics 12 apter 14 – ELECTROMAGNETISM Solved MCQ's ts Notes from website ∰ www.lastho	pestudy.com					
14.1 MAGNETIC FIELD DUE TO CURRENT IN LONG CONDUCTOR							
1. Electric current produces magnetic f	ield was suggested by						
(a) Faraday (b) Oersted	(c) Henry	(d) Lenz					
2. The shape of magnetic field around a	(a) Dector gular	lg wire is					
a) Elliptical (D) Square	(C) Rectangular	(u) circular					
(a) Right Hand Rule (b) Left Hand Rule	(c) Fleming Left Hand Rule	can be determined by					
MCQ # 2: (d)	MCQ # 1: (b) MCQ # 3: (a))					
14.2 FORCE ON A CURRENT CARRYING C	ONDUCTOR IN A UNIFORM MA	AGNETIC FIELD					
1. A current carrying conductor placed	in a uniform magnetic field w	vill experience:					
(a) Electrical Force (b) Magnetic Force	(c) Gravitational Force	(d) Nuclear Force					
2. Direction of $\vec{L} \times \vec{B}$ is same as:							
(a) Magnetic field (b) Electric field	(c) Magnetic force	(d) Electric force					
3. The units of magnetic field B, in syste	em international is:						
(a) weber (b) Testa	(C) Gauss	(a) Newton					
4. One testa (1) is. (a) $1T - 1NAm^{-1}$ (b) $1T - 1NmA^{-1}$	(c) $1T - 1NAm$	(d) $1T - 1N A^{-1}m^{-1}$					
5. Two parallel wires carrying current	in the same direction:	$(u) \Pi = \Pi \Lambda \Pi$					
(a) Attract each other (b) repel each other	(c) cancel their effect	(d) no effect on each other					
6. If fingers of right hand show the dire	ction of magnetic field and pa	llm shows the direction of					
force, then thumb points for:							
(a) Torque (b) Voltage	(c) Current	(d) Induced emf					
7. A dot represent the direction of a qua	antity:						
(a) Into the page (b) Out of page	(c) Tangent to page	(d) Normal to page					
MCQ # 1: (b) MCQ # 2: (a) MCQ # 3: (b)	MCQ # 4: (d) MCQ # 5: (a)	MCQ # 6: (c) MCQ # 7: (b)					
MCOs Related to the Article "14.3 MAGNI	FTIC FLUX AND FLUX DENSITY	V"					
MCQS Related to the Article 14.3 MAGNETIC FLOX AND FLOX DENSITY							
1. The magnetic flux " ϕ " through an are	Pa A IS:						
1. The magnetic flux " ϕ " through an are (a) $\phi = \mathbf{B} \times \mathbf{A}$ (b) $\phi = \mathbf{B} \cdot \mathbf{A}$	$(c) \phi = \mathbf{A} \times \mathbf{B}$	(d) None of these					
1. The magnetic flux " ϕ " through an are (a) $\phi = \mathbf{B} \times \mathbf{A}$ (b) $\phi = \mathbf{B} \cdot \mathbf{A}$ 2. The S.I. unit of magnetic flux is	$\begin{array}{l} \mathbf{a} \mathbf{A} \mathbf{IS:} \\ (\mathbf{c}) \phi = \mathbf{A} \times \mathbf{B} \end{array}$	(d) None of these					
1. The magnetic flux " ϕ " through an are(a) $\phi = \mathbf{B} \times \mathbf{A}$ (b) $\phi = \mathbf{B} \cdot \mathbf{A}$ 2. The S.I. unit of magnetic flux is(a) Tesla(b) Weber	(c) $\phi = \mathbf{A} \times \mathbf{B}$	(d) None of these (d) Newton					
 The magnetic flux "φ" through an are (a) φ = B × A (b) φ = B. A The S.I. unit of magnetic flux is (a) Tesla (b) Weber One weber is equal to 	(c) $\phi = \mathbf{A} \times \mathbf{B}$ (c) Joule	(d) None of these (d) Newton					
1. The magnetic flux " ϕ " through an are(a) $\phi = \mathbf{B} \times \mathbf{A}$ (b) $\phi = \mathbf{B} \cdot \mathbf{A}$ 2. The S.I. unit of magnetic flux is(a) Tesla(b) Weber3. One weber is equal to(a) N.A ² /A(b) N.m ² /A	(c) $\phi = \mathbf{A} \times \mathbf{B}$ (c) Joule (c) N.A/m	(d) None of these (d) Newton (d) N.m/A					
1. The magnetic flux " ϕ " through an are(a) $\phi = \mathbf{B} \times \mathbf{A}$ (b) $\phi = \mathbf{B} \cdot \mathbf{A}$ 2. The S.I. unit of magnetic flux is(a) Tesla(b) Weber3. One weber is equal to(a) N.A²/A(b) N.m²/A4. One Tesla is also equal to	(c) $\phi = \mathbf{A} \times \mathbf{B}$ (c) Joule (c) N.A/m	(d) None of these (d) Newton (d) N.m/A					
1. The magnetic flux " ϕ " through an are (a) $\phi = \mathbf{B} \times \mathbf{A}$ (b) $\phi = \mathbf{B} \cdot \mathbf{A}$ 2. The S.I. unit of magnetic flux is (a) Tesla (b) Weber 3. One weber is equal to (a) N.A ² /A (b) N.m ² /A 4. One Tesla is also equal to (a) Wb m ⁻² (b) Wb m ²	Sa A is: (c) $\phi = \mathbf{A} \times \mathbf{B}$ (c) Joule (c) N.A/m (c) Wb m	 (d) None of these (d) Newton (d) N.m/A (d) None 					
1. The magnetic flux " ϕ " through an are (a) $\phi = \mathbf{B} \times \mathbf{A}$ (b) $\phi = \mathbf{B} \cdot \mathbf{A}$ 2. The S.I. unit of magnetic flux is (a) Tesla (b) Weber 3. One weber is equal to (a) N.A ² /A (b) N.m ² /A 4. One Tesla is also equal to (a) Wb m ⁻² (b) Wb m ² 5. Magnetic flux will be maximum if the	(c) $\phi = \mathbf{A} \times \mathbf{B}$ (c) Joule (c) N.A/m (c) Wb m e angle between magnetic field	(d) None of these (d) Newton (d) N.m/A (d) None d strength and vector area is:					
1. The magnetic flux " ϕ " through an are (a) $\phi = \mathbf{B} \times \mathbf{A}$ (b) $\phi = \mathbf{B} \cdot \mathbf{A}$ 2. The S.I. unit of magnetic flux is (a) Tesla (b) Weber 3. One weber is equal to (a) N.A ² /A (b) N.m ² /A 4. One Tesla is also equal to (a) Wb m ⁻² (b) Wb m ² 5. Magnetic flux will be maximum if the (a) 0° (b) 60° 6. Wh m ⁻² is equal to:	a A is: (c) $\phi = \mathbf{A} \times \mathbf{B}$ (c) Joule (c) N.A/m (c) Wb m e angle between magnetic field (c) 90°	 (d) None of these (d) Newton (d) N.m/A (d) None d strength and vector area is: (d) 180° 					
1. The magnetic flux " ϕ " through an are (a) $\phi = \mathbf{B} \times \mathbf{A}$ (b) $\phi = \mathbf{B} \cdot \mathbf{A}$ 2. The S.I. unit of magnetic flux is (a) Tesla (b) Weber 3. One weber is equal to (a) N.A ² /A (b) N.m ² /A 4. One Tesla is also equal to (a) Wb m ⁻² (b) Wb m ² 5. Magnetic flux will be maximum if the (a) 0° (b) 60° 6. Wb m ⁻² is equal to: (a) 10 ³ gauss (b) 10 ⁶ gauss	Para A 15: (c) $\phi = \mathbf{A} \times \mathbf{B}$ (c) Joule (c) N.A/m (c) Wb m Para angle between magnetic field (c) 90° (c) 10 ⁴ gauss	 (d) None of these (d) Newton (d) N.m/A (d) None d strength and vector area is: (d) 180° (d) 10⁵ gauss 					
1. The magnetic flux " ϕ " through an are (a) $\phi = \mathbf{B} \times \mathbf{A}$ (b) $\phi = \mathbf{B} \cdot \mathbf{A}$ 2. The S.I. unit of magnetic flux is (a) Tesla (b) Weber 3. One weber is equal to (a) N.A ² /A (b) N.m ² /A 4. One Tesla is also equal to (a) Wb m ⁻² (b) Wb m ² 5. Magnetic flux will be maximum if the (a) 0° (b) 60° 6. Wb m ⁻² is equal to: (a) 10 ³ gauss (b) 10 ⁶ gauss 7. If 0.5 T filled over an area of 2 m ² wh	a A is: (c) $\phi = \mathbf{A} \times \mathbf{B}$ (c) Joule (c) N.A/m (c) Wb m angle between magnetic field (c) 90° (c) 10 ⁴ gauss bich lies at an angle of 60° wit	 (d) None of these (d) Newton (d) N.m/A (d) None d strength and vector area is: (d) 180° (d) 10⁵ gauss h the field. Then the resultant 					
1. The magnetic flux " ϕ " through an are (a) $\phi = \mathbf{B} \times \mathbf{A}$ (b) $\phi = \mathbf{B} \cdot \mathbf{A}$ 2. The S.I. unit of magnetic flux is (a) Tesla (b) Weber 3. One weber is equal to (a) N.A ² /A (b) N.m ² /A 4. One Tesla is also equal to (a) Wb m ⁻² (b) Wb m ² 5. Magnetic flux will be maximum if the (a) 0° (b) 60° 6. Wb m ⁻² is equal to: (a) 10 ³ gauss (b) 10 ⁶ gauss 7. If 0.5 T filled over an area of 2 m ² wh flux will be:	(c) $\phi = \mathbf{A} \times \mathbf{B}$ (c) Joule (c) N.A/m (c) Wb m e angle between magnetic field (c) 90° (c) 10 ⁴ gauss hich lies at an angle of 60° with	 (d) None of these (d) Newton (d) N.m/A (d) None d strength and vector area is: (d) 180° (d) 10⁵ gauss h the field. Then the resultant 					
1. The magnetic flux " ϕ " through an are(a) $\phi = \mathbf{B} \times \mathbf{A}$ (b) $\phi = \mathbf{B} \cdot \mathbf{A}$ 2. The S.I. unit of magnetic flux is(a) Tesla(b) Weber3. One weber is equal to(a) N.A²/A(b) N.m²/A4. One Tesla is also equal to(a) Wb m²(b) Wb m²5. Magnetic flux will be maximum if the(a) 0°(b) 60°6. Wb m² is equal to:(a) 10³ gauss(b) 106 gauss7. If 0.5 T filled over an area of 2 m² whflux will be:(a) 0.25 T(b) 0.25 Wb	a A is: (c) $\phi = A \times B$ (c) Joule (c) N.A/m (c) Wb m e angle between magnetic field (c) 90° (c) 10 ⁴ gauss hich lies at an angle of 60° with (c) 0.5 T	(d) None of these (d) Newton (d) N.m/A (d) None d strength and vector area is: (d) 180° (d) 10 ⁵ gauss h the field. Then the resultant (d) 0.5 Wb					
1. The magnetic flux " ϕ " through an area(a) $\phi = \mathbf{B} \times \mathbf{A}$ (b) $\phi = \mathbf{B} \cdot \mathbf{A}$ 2. The S.I. unit of magnetic flux is(a) Tesla(b) Weber3. One weber is equal to(a) N.A²/A(b) N.m²/A4. One Tesla is also equal to(a) Wb m²(b) Wb m²5. Magnetic flux will be maximum if the(a) 0°(b) 60°6. Wb m² is equal to:(a) 10³ gauss(b) 106 gauss7. If 0.5 T filled over an area of 2 m² whflux will be:(a) 0.25 T(b) 0.25 WbMCQ # 1: (b)MCQ # 2: (b)MCQ # 1: (b)MCQ # 2: (b)	a A is: (c) $\phi = A \times B$ (c) Joule (c) N.A/m (c) Wb m angle between magnetic field (c) 90° (c) 10 ⁴ gauss hich lies at an angle of 60° with (c) 0.5 T (c) 0.5 T (c) MCQ # 4: (a) MCQ # 5: (a)	(d) None of these (d) Newton (d) N.m/A (d) None d strength and vector area is: (d) 180° (d) 10 ⁵ gauss h the field. Then the resultant (d) 0.5 Wb MCQ # 6: (c) MCQ # 7: (d)					
1. The magnetic flux " ϕ " through an are(a) $\phi = \mathbf{B} \times \mathbf{A}$ (b) $\phi = \mathbf{B} \cdot \mathbf{A}$ 2. The S.I. unit of magnetic flux is(a) Tesla(b) Weber3. One weber is equal to(a) N.A²/A(b) N.m²/A4. One Tesla is also equal to(a) Wb m²(b) Wb m²5. Magnetic flux will be maximum if the(a) 0°(b) 60°6. Wb m² is equal to:(a) 10³ gauss(b) 106 gauss7. If 0.5 T filled over an area of 2 m² whflux will be:(a) 0.25 T(b) 0.25 WbMCQ # 1: (b)MCQ # 2: (b)MCQs Related to Article "14.4 AMPERE'S	a A is: (c) $\phi = A \times B$ (c) Joule (c) N.A/m (c) Wb m e angle between magnetic field (c) 90° (c) 10 ⁴ gauss hich lies at an angle of 60° with (c) 0.5 T MCQ # 4: (a) MCQ # 5: (a) LAW AND DETERMINATION	(d) None of these (d) Newton (d) N.m/A (d) None d strength and vector area is: (d) 180° (d) 10 ⁵ gauss h the field. Then the resultant (d) 0.5 Wb MCQ # 6: (c) MCQ # 7: (d) OF FLUX DENSITY"					
1. The magnetic flux " ϕ " through an area (a) $\phi = \mathbf{B} \times \mathbf{A}$ (b) $\phi = \mathbf{B} \cdot \mathbf{A}$ 2. The S.I. unit of magnetic flux is (a) Tesla (b) Weber 3. One weber is equal to (a) N.A ² /A (b) N.m ² /A 4. One Tesla is also equal to (a) Wb m ⁻² (b) Wb m ² 5. Magnetic flux will be maximum if the (a) 0° (b) 60° 6. Wb m ⁻² is equal to: (a) 10 ³ gauss (b) 10 ⁶ gauss 7. If 0.5 T filled over an area of 2 m ² wh flux will be: (a) 0.25 T (b) 0.25 Wb MCQ # 1: (b) MCQ # 2: (b) MCQ # 3: (d) MCQs Related to Article "14.4 AMPERE'S 1. Magnetic induction at a point due to	a A is: (c) $\phi = A \times B$ (c) Joule (c) N.A/m (c) Wb m e angle between magnetic field (c) 90° (c) 10 ⁴ gauss hich lies at an angle of 60 ° with (c) 0.5 T <u>MCQ # 4: (a) MCQ # 5: (a)</u> LAW AND DETERMINATION the current carrying conduct	(d) None of these (d) Newton (d) N.m/A (d) None d strength and vector area is: (d) 180° (d) 10 ⁵ gauss h the field. Then the resultant (d) 0.5 Wb MCQ # 6: (c) MCQ # 7: (d) OF FLUX DENSITY" or is determined by:					
1. The magnetic flux " ϕ " through an are (a) $\phi = \mathbf{B} \times \mathbf{A}$ (b) $\phi = \mathbf{B} \cdot \mathbf{A}$ 2. The S.I. unit of magnetic flux is (a) Tesla (b) Weber 3. One weber is equal to (a) N.A ² /A (b) N.m ² /A 4. One Tesla is also equal to (a) Wb m ⁻² (b) Wb m ² 5. Magnetic flux will be maximum if the (a) 0° (b) 60° 6. Wb m ⁻² is equal to: (a) 10 ³ gauss (b) 10 ⁶ gauss 7. If 0.5 T filled over an area of 2 m ² wh flux will be: (a) 0.25 T (b) 0.25 Wb MCQ # 1: (b) MCQ # 2: (b) MCQ # 3: (d) MCQs Related to Article "14.4 AMPERE'S 1. Magnetic induction at a point due to (a) Ampere's law (b) Faraday's law	a A is: (c) $\phi = A \times B$ (c) Joule (c) N.A/m (c) Wb m angle between magnetic field (c) 90° (c) 10 ⁴ gauss hich lies at an angle of 60° with (c) 0.5 T (c) 0.5 T MCQ # 4: (a) MCQ # 5: (a) LAW AND DETERMINATION the current carrying conducted (c) Lenz's Law	(d) None of these (d) Newton (d) N.m/A (d) None d strength and vector area is: (d) 180° (d) 10 ⁵ gauss h the field. Then the resultant (d) 0.5 Wb MCQ # 6: (c) MCQ # 7: (d) OF FLUX DENSITY" or is determined by: (d) Newton's law					
1. The magnetic flux " ϕ " through an are (a) $\phi = \mathbf{B} \times \mathbf{A}$ (b) $\phi = \mathbf{B} \cdot \mathbf{A}$ 2. The S.I. unit of magnetic flux is (a) Tesla (b) Weber 3. One weber is equal to (a) N.A ² /A (b) N.m ² /A 4. One Tesla is also equal to (a) Wb m ⁻² (b) Wb m ² 5. Magnetic flux will be maximum if the (a) 0° (b) 60° 6. Wb m ⁻² is equal to: (a) 10 ³ gauss (b) 10 ⁶ gauss 7. If 0.5 T filled over an area of 2 m ² wh flux will be: (a) 0.25 T (b) 0.25 Wb MCQ # 1: (b) MCQ # 2: (b) MCQ # 3: (d) MCQs Related to Article "14.4 AMPERE'S 1. Magnetic induction at a point due to (a) Ampere's law (b) Faraday's law 2. $\sum_{r=1}^{N} \mathbf{B} \cdot \Delta \mathbf{L} = \mu_0 \mathbf{I}$ is the relation for:	a A is: (c) $\phi = A \times B$ (c) Joule (c) N.A/m (c) Wb m e angle between magnetic field (c) 90° (c) 10 ⁴ gauss hich lies at an angle of 60° with (c) 0.5 T <u>MCQ # 4: (a) MCQ # 5: (a)</u> LAW AND DETERMINATION the current carrying conducto (c) Lenz's Law	(d) None of these (d) Newton (d) N.m/A (d) None d strength and vector area is: (d) 180° (d) 10 ⁵ gauss h the field. Then the resultant (d) 0.5 Wb MCQ # 6: (c) MCQ # 7: (d) OF FLUX DENSITY" or is determined by: (d) Newton's law					
1. The magnetic flux " ϕ " through an are (a) $\phi = \mathbf{B} \times \mathbf{A}$ (b) $\phi = \mathbf{B} \cdot \mathbf{A}$ 2. The S.I. unit of magnetic flux is (a) Tesla (b) Weber 3. One weber is equal to (a) N.A ² /A (b) N.m ² /A 4. One Tesla is also equal to (a) Wb m ⁻² (b) Wb m ² 5. Magnetic flux will be maximum if the (a) 0° (b) 60° 6. Wb m ⁻² is equal to: (a) 10 ³ gauss (b) 10 ⁶ gauss 7. If 0.5 T filled over an area of 2 m ² wh flux will be: (a) 0.25 T (b) 0.25 Wb MCQ # 1: (b) MCQ # 2: (b) MCQ # 3: (d) MCQs Related to Article "14.4 AMPERE'S 1. Magnetic induction at a point due to (a) Ampere's law (b) Faraday's law 2. $\sum_{r=1}^{N} \mathbf{B} \cdot \mathbf{\Delta} \mathbf{L} = \mu_0 \mathbf{I}$ is the relation for: (a) Milikan's law (b) Gauss's law	a A is: (c) $\phi = A \times B$ (c) Joule (c) N.A/m (c) Wb m angle between magnetic field (c) 90° (c) 10 ⁴ gauss hich lies at an angle of 60° with (c) 0.5 T <u>MCQ # 4: (a) MCQ # 5: (a)</u> LAW AND DETERMINATION the current carrying conducted (c) Lenz's Law (c) Ampere's law	(d) None of these (d) Newton (d) N.m/A (d) None d strength and vector area is: (d) 180° (d) 10 ⁵ gauss h the field. Then the resultant (d) 0.5 Wb MCQ # 6: (c) MCQ # 7: (d) OF FLUX DENSITY" or is determined by: (d) Newton's law (d) Lenz's law					
1. The magnetic flux " ϕ " through an are (a) $\phi = \mathbf{B} \times \mathbf{A}$ (b) $\phi = \mathbf{B} \cdot \mathbf{A}$ 2. The S.I. unit of magnetic flux is (a) Tesla (b) Weber 3. One weber is equal to (a) N.A ² /A (b) N.m ² /A 4. One Tesla is also equal to (a) Wb m ⁻² (b) Wb m ² 5. Magnetic flux will be maximum if the (a) 0° (b) 60° 6. Wb m ⁻² is equal to: (a) 10 ³ gauss (b) 10 ⁶ gauss 7. If 0.5 T filled over an area of 2 m ² wh flux will be: (a) 0.25 T (b) 0.25 Wb MCQ # 1: (b) MCQ # 2: (b) MCQ # 3: (d) MCQs Related to Article "14.4 AMPERE'S 1. Magnetic induction at a point due to (a) Ampere's law (b) Faraday's law 2. $\sum_{r=1}^{N} \mathbf{B} \cdot \Delta \mathbf{L} = \mu_0 I$ is the relation for: (a) Milikan's law (b) Gauss's law 3. The unit of permeability of free space	a A is: (c) $\phi = A \times B$ (c) Joule (c) N.A/m (c) Wb m e angle between magnetic field (c) 90° (c) 10 ⁴ gauss hich lies at an angle of 60° with (c) 0.5 T (c) 0.5 T <u>MCQ # 4: (a) MCQ # 5: (a)</u> LAW AND DETERMINATION the current carrying conductor (c) Lenz's Law (c) Ampere's law e is	(d) None of these (d) Newton (d) N.m/A (d) None d strength and vector area is: (d) 180° (d) 10 ⁵ gauss h the field. Then the resultant (d) 0.5 Wb MCQ # 6: (c) MCQ # 7: (d) OF FLUX DENSITY" or is determined by: (d) Newton's law (d) Lenz's law					
1. The magnetic flux " ϕ " through an are (a) $\phi = \mathbf{B} \times \mathbf{A}$ (b) $\phi = \mathbf{B} \cdot \mathbf{A}$ 2. The S.I. unit of magnetic flux is (a) Tesla (b) Weber 3. One weber is equal to (a) N.A ² /A (b) N.m ² /A 4. One Tesla is also equal to (a) Wb m ⁻² (b) Wb m ² 5. Magnetic flux will be maximum if the (a) 0° (b) 60° 6. Wb m ⁻² is equal to: (a) 10 ³ gauss (b) 10 ⁶ gauss 7. If 0.5 T filled over an area of 2 m ² wh flux will be: (a) 0.25 T (b) 0.25 Wb MCQ # 1: (b) MCQ # 2: (b) MCQ # 3: (d) MCQs Related to Article "14.4 AMPERE'S 1. Magnetic induction at a point due to (a) Ampere's law (b) Faraday's law 2. $\sum_{r=1}^{N} \mathbf{B} \cdot \Delta \mathbf{L} = \mu_0 I$ is the relation for: (a) Milikan's law (b) Gauss's law 3. The unit of permeability of free space (a) T.m/A (b) T.m ² /A 4. The value of u with SL write in	Part A 15: (c) $\phi = \mathbf{A} \times \mathbf{B}$ (c) Joule (c) N.A/m (c) Wb m e angle between magnetic field (c) 90° (c) 10 ⁴ gauss hich lies at an angle of 60 ° with (c) 0.5 T (c) 0.5 T MCQ # 4: (a) MCQ # 5: (a) LAW AND DETERMINATION the current carrying conductor (c) Lenz's Law (c) Ampere's law e is (c) T.m/A ²	(d) None of these (d) Newton (d) N.m/A (d) None (d) None (d) 180° (d) 10 ⁵ gauss h the field. Then the resultant (d) 0.5 Wb MCQ # 6: (c) MCQ # 7: (d) OF FLUX DENSITY" or is determined by: (d) Newton's law (d) Lenz's law (d) None					
1. The magnetic flux " ϕ " through an are (a) $\phi = \mathbf{B} \times \mathbf{A}$ (b) $\phi = \mathbf{B} \cdot \mathbf{A}$ 2. The S.I. unit of magnetic flux is (a) Tesla (b) Weber 3. One weber is equal to (a) N.A ² /A (b) N.m ² /A 4. One Tesla is also equal to (a) Wb m ⁻² (b) Wb m ² 5. Magnetic flux will be maximum if the (a) 0° (b) 60° 6. Wb m ⁻² is equal to: (a) 10 ³ gauss (b) 10 ⁶ gauss 7. If 0.5 T filled over an area of 2 m ² wh flux will be: (a) 0.25 T (b) 0.25 Wb MCQ # 1: (b) MCQ # 2: (b) MCQ # 3: (d) MCQs Related to Article "14.4 AMPERE'S 1. Magnetic induction at a point due to (a) Ampere's law (b) Faraday's law 2. $\sum_{r=1}^{N} \mathbf{B} \cdot \mathbf{AL} = \mu_0 I$ is the relation for: (a) Milikan's law (b) Gauss's law 3. The unit of permeability of free space (a) T.m/A (b) T.m ² /A 4. The value of μ_0 with SI units is: (a) $4\pi \times 10^{-6}$ Wb $h^{-1}m^{-1}$	Parameter A is: (c) $\phi = \mathbf{A} \times \mathbf{B}$ (c) Joule (c) N.A/m (c) Wb m e angle between magnetic field (c) 90° (c) 10 ⁴ gauss hich lies at an angle of 60° with (c) 0.5 T (c) 0.5 T MCQ # 4: (a) MCQ # 5: (a) LAW AND DETERMINATION the current carrying conductor (c) Lenz's Law (c) Ampere's law e is (c) T.m/A ² (b) $4\pi \times 10^{-7}$ Wb A^{-1} m ⁻¹	(d) None of these (d) Newton (d) N.m/A (d) None d strength and vector area is: (d) 180° (d) 10 ⁵ gauss h the field. Then the resultant (d) 0.5 Wb MCQ # 6: (c) MCQ # 7: (d) OF FLUX DENSITY" or is determined by: (d) Newton's law (d) Lenz's law (d) None					
1. The magnetic flux " ϕ " through an are (a) $\phi = \mathbf{B} \times \mathbf{A}$ (b) $\phi = \mathbf{B} \cdot \mathbf{A}$ 2. The S.I. unit of magnetic flux is (a) Tesla (b) Weber 3. One weber is equal to (a) N.A ² /A (b) N.m ² /A 4. One Tesla is also equal to (a) Wb m ⁻² (b) Wb m ² 5. Magnetic flux will be maximum if the (a) 0° (b) 60° 6. Wb m ⁻² is equal to: (a) 10 ³ gauss (b) 10 ⁶ gauss 7. If 0.5 T filled over an area of 2 m ² wh flux will be: (a) 0.25 T (b) 0.25 Wb MCQ # 1: (b) MCQ # 2: (b) MCQ # 3: (d) MCQs Related to Article "14.4 AMPERE'S 1. Magnetic induction at a point due to (a) Ampere's law (b) Faraday's law 2. $\sum_{r=1}^{N} \mathbf{B} \cdot \Delta \mathbf{L} = \mu_0 I$ is the relation for: (a) Milikan's law (b) Gauss's law 3. The unit of permeability of free space (a) T.m/A (b) T.m ² /A 4. The value of μ_o with SI units is: (a) $4\pi \times 10^{-6}$ WbA ⁻¹ m ⁻¹ (c) $4\pi \times 10^{-8}$ WbA ⁻¹ m ⁻¹	Parameter A is: (c) $\phi = \mathbf{A} \times \mathbf{B}$ (c) Joule (c) N.A/m (c) Wb m e angle between magnetic field (c) 90° (c) 10 ⁴ gauss hich lies at an angle of 60° with (c) 0.5 T (c) 0.5 T MCQ # 4: (a) MCQ # 5: (a) LAW AND DETERMINATION the current carrying conductor (c) Lenz's Law (c) Ampere's law e is (c) T.m/A ² (b) $4\pi \times 10^{-7}$ WbA ⁻¹ m ⁻¹ (d) $4\pi \times 10^{-9}$ WbA ⁻¹ m ⁻¹	(d) None of these (d) Newton (d) N.m/A (d) None d strength and vector area is: (d) 180° (d) 10 ⁵ gauss h the field. Then the resultant (d) 0.5 Wb MCQ # 6: (c) MCQ # 7: (d) OF FLUX DENSITY" or is determined by: (d) Newton's law (d) Lenz's law (d) None					

MCQs F.Sc. Phys	ics		Chapter 14: Electromagnetism			
5. The magnetic in	duction inside of	current carryin	g solenoid is			
(a) $\mu_o N$	(b) μ _o NL	(c) $\mu_o n$	I	(d) Non	e of these	
6. When the numb	oer of turns in	a solenoid is	doubled witho	out any change	in the length of the	
solenoid its self	induction will b	e:				
(a) Four times	(b) Doubled	(c) Halv	/ed	(d) One	forth	
MCQ # 1: (a)	MCQ # 2: (c)	MCQ # 3: (a)	MCQ # 4: (b)	MCQ # 5: (c)	MCQ # 6: (b)	
MCQs Related to "14	.5 FORCE ON A	MOVING CHAR	GE IN MAGNET	TIC FIELD"		
1. If the angle betw	veen v and B is z	zero then magn	etic force will	be		
(a) Maximum	(b) Minimum	(c) Zero)	(d) Non	e	
2. Force on a movin	ng charge in a u	niform magnet	tic field will be	maximum, wh	en angle between v	
and B is:						
(a) 0°	(b) 30°	(c) 60°	• 6	(d) 90°		
3. A charged partic	cles is projected	l at an angle ini	to a uniform m	agnetic field. W	which of the following	
(a) Energy	(h) Charge		teu by magnet	ic neia:	city	
		(C) spe	tho	(u) veid	ulty	
4. I ne unit of E is Λ	$\mathbf{v}_{\mathbf{c}} + \mathbf{a} \mathbf{n} \mathbf{a}$ that of	\mathbf{B} is $NA^{-1}m^{-1}$, the unit $\frac{1}{B}$ is:		1	
(a) ms ^{-2}	(b) ms	(c) ms ⁻		(d) m ⁻¹	S ⁻¹	
5. Magnetic force o	n a charge part	icle moving in	magnetic field	is perpendicul	ar to:	
(a) Velocity of particl	e (b) magnetic fi	eld (c) elec	tric field	(d) Both	1 a & b	
o. If the charge is a	t rest in magne	uc neia, then fo	orce on charge	IS:		
$(a) q(v \times B)$	(b) zero	(c) <i>qvB</i>	cos θ	(d) <i>qvB</i>	- de ser de la companya de	
7. If F_1 and F_2 are f	forces acting on	i an alpha parti	cle and electro	on respectively,	, when moving	
perpendicular to $(a) E = E$	$rac{}$ the magnetic f	liela, then	< F	(d) E _	- <i>AF</i>	
(a) $F_1 = F_2$ M(0 # 1: (c) M(0 #	$(D) F_1 > F_2$ 2: (d) MCO #	$\frac{(C) F_1 < C}{3 \cdot (d)} = M(O \# d)$	r_2	$(u) F_1 = \frac{1}{5 \cdot (d)} MCO = \frac{1}{5 \cdot (d)}$	$= 4F_2$ 6: (b) MCO # 7: (b)	
	2. (u) MCQ #					
MCQs Related to "14	.6 MOTION OF A	A CHARGED PA	RTICLE IN AN H	ELECTRIC AND	MAGNETIC FIELD"	
1. The Lorentz forc	e on a charged	particle moving	g in electric fie	ld E and magne	etic field B is:	
(a) $\mathbf{F} = \mathbf{F}_{\mathbf{e}} + \mathbf{F}_{\mathbf{m}}$	(b) $\mathbf{F} = \mathbf{F_e} - \mathbf{F_e}$	$\mathbf{F}_{\mathbf{m}}$ (c) \mathbf{F} =	F _e F _m	(d) F =	$F_e \times F_m$	
2. The magnetic for	rce is simply a:	(C) (C)	(P)Y			
(a) Reflecting force	(b) Deflecting	force (c) Res	toring force	(d) Grav	vitational force	
3. It is possible to s	set a charge at r	est into motior	with magneti	c field		
(a) Yes	(b) No	(c) Som	e Time	(d) Non	e	
4. If a charge is free	e to move in an	electric field, t	hen acceleratio	on will be:		
(a) $\frac{q_E}{m}$	(b) <i>qEm</i>	(c) $\frac{q}{Em}$		(d) $\frac{m}{qE}$		
5. Work done on a	charge particle	moving in a ur	iform magnet	ic field is:		
(a) Maximum	(b) Zero	(c) Min	imum	(d) Zero)	
MCQ # 1	l: (a) MCQ # 2	:: (b) MCQ # 3	: (b) MCQ # 4	4: (a) MCQ #	5: (d)	
			0.0	0.11		
MCQs Related to "14	4.7 DETERMIN	ATION OF e/m	UF AN ELECTR	UN"		
1. When a charged	particle is proj	ected perpendi	cular to a unif		neid, its path:	
(a) spiral 2 The electrons of	(U) HellX	(CJ Elli) harge "o" is ma	use wing in a circle	(a) Lirc of radius "r" v	uidi' with speed "w" in a	
2. The electrons of mass in and charge e is moving in a circle of radius "r" with speed "V" in a uniform magnetic field of strength "P" then						
	(b) $m \propto D$		1	(4)	1	
$(a) \rightarrow \infty m$	$(U) T \propto B$	(c) <i>r</i> ∝	\overline{v}	(a) $r \propto$	m	
3. Charge to mass i	ratio of Neutron	1 is:		100 (1)		
(a) 1.758×10^{-11} C/kg (b) 9.58×10^{7} C/kg (c) 1.758×10^{11} C/kg (d) zero						
(a) $B^2 r^2$	(b) ^{2V}	$(a) B^2 r^2$		(J) V		
$\begin{bmatrix} a \end{bmatrix}_{2V}$	$(D) \frac{1}{B^2 r^2}$	(C) - V		$(d) \frac{1}{B^2 r^2}$		
5. The value of $\frac{1}{m}$ is	smallest for					
(a) Proton	(b) Electron	(c) β –	particle	(d) Posi	tron	
6. When a charged	particle moves	through a mag	netic field, it s	uffers change i	n	
(a) Unarge $M(0 \pm 1)$	(D) Mass	(c) Ene	rgy MCO # 4: (b)	(d) Dire	$\frac{1}{1}$	
μιος π τ. (u)	1. 1. Ca J	uj	נטן יד יי געטיי	יייטע יי טי נמן	יייטע יי טי נען	

MCQs F.Sc. Physics **Chapter 14: Electromagnetism** MCQs Related to the Article "14.8 CATHODE RAY OSCILLOSCOPE" 1 Beam of electrons are also called: (a) Positive rays (b) x-rays (c) cathode rays (d) cosmic rays 2. The high speed graph plotting device is: (a) ERG (b) CRO (c) Galvanometer (d) Ammeter 3. The anode in the CRO is: (a) Control number of electrons (b) Control the brightness of spot formed (c) Accelerates and focus the beam (d) At negative potential with respect to cathode 4. The brightness of spot on CRO screen is controlled by: (a) Anodes (b) Cathodes (c) Deflection Plates (d) Grid 5. In CRO, the number of electrons are controlled by operating : (c) Grid (d) Plates (a) Anodes (b) Cathodes 6. The electron gun in CRO consists of: (a) Grid (b) Three Anodes (c) Indirectly heated cathodes (d) All a, b & c 7. When beam of electrons falls on the screen of CRO, it makes a visible spot because the screen is: (a) Polished (c) Clear (d) Fluorescent (b) Dark 8. The material used in fluorescent screen is (a) Electric (b) Magnetic (c) Phosphors (d) None 9. In CRO, the output wave form of time base generator is: (b) Square (c) Sinusoidal (d) Saw-Tooth (a) Circular 10. The waveform of sinusoidal voltage, its frequency and phase can be found by (a) CRO (b) Diode (c) Transistor (d) Radio MCQ # 1: (c) MCQ # 2: (b) MCQ # 3: (c) MCQ # 4: (d) MCQ # 5: (c) MCQ # 6: (d) MCQ # 7: (d) MCQ # 9: (d) MCQ # 10: (a) MCQ # 8: (c) MCQs Related to the Article "14.9 TORQUE ON A CURRENT CARRYING COIL" 1. A current carrying loop, when placed in a uniform magnetic field will experience (c) Magnetic flux (a) Electric flux (b) Torque (d) Force 2. Torque on a current carrying coil is: (a) BINA $\cos \alpha$ (b) BINA $\sin \alpha$ (c) BIL $\cos \alpha$ (d) BIL $\sin \alpha$ 3. The toque in the coil can be increased by increasing (b) Current & magnetic field (a) Number of turns (c) Area of coil (d) All of above 4. The relation for maximum value of deflecting couple is given by: (a) $\tau = \frac{B}{NIA}$ (b) $\tau = BINA$ (c) $\tau = BNA$ (d) $\tau = BNA \sin \theta$ 5. The torque acting on a current carrying coil is maximum, when plane of coil is: (a) Perpendicular to **B** (b) Makes 45° with **B** (c) Parallel to **B** (d) None of these MCQ # 1: (b) MCQ # 2: (a) MCQ # 3: (d) MCQ # 4: (b) MCQ # 5: (c) MCQs Related to the Article"14.10 GALVANOMETER" 1. Instrument used for detection of current is called: (a) Ohmmeter (b) Voltmeter (c) Ammeter (d) Galvanometer 2. The galvanometer constant in a moving coil galvanometer is given by: (b) $K = \frac{NAB}{r}$ (a) $K = \frac{NB}{CA}$ (d) $K = \frac{CA}{NB}$ (c) $K = \frac{C}{NAB}$ 3. The galvanometer can be made sensitive if the value of the factor $\frac{1}{BNA}$ (a) Made large (b) Made small (c) Remains constant (d) Infinite 4. The relation between current "I" and deflection " θ " in a moving coil galvanometer is: (a) $I \propto \frac{1}{\theta}$ (b) $I \propto \cos \theta$ (c) $I \propto \sin \theta$ (d) $I \propto \theta$ 5. The pole pieces of the magnet in galvanometer are made concave to make the field (a) Radial (d) Both a & b (b) Stronger (c) Weaker MCQ # 1: (d) MCQ # 2: (c) MCQ # 3: (b) MCQ # 4: (d) MCQ # 5: (d) MCQs Related to "CONVERSION OF GALVANOMETER INTO AMMETER" AMMETER 1. Ammeter is used to measure: (a) Resistance (b) Voltage (c) Current (d) Capacitance

MCQs F.Sc. Physi	ics		Chapter 14: Electromagnetism				
2. When a small res	sistance is conne	cted paralle	el to galvanomet	er, the resulting circuit behaves as:			
(a) Voltmeter	(b)Ammeter	(c) Pc	tentiometer	(d) Wheatstone bridge			
3. A shunted galvan	nometer is called	1					
(a) Voltmeter	(b) Ohmmeter	(c) AV	/O meter	(d) Ammeter			
4. To measure the c	current in a circu	it, ammete	r is always conne	ected in:			
(a) Parallel		(b) Se	eries				
(c) Sometimes parallel	l sometimes series	s (d) N	(d) Neither series nor parallel				
5. To find the shunt	t resistance, we u	sed equation	on				
(a) $R_s = \frac{I_g R_g}{R_g}$	(b) $R_s = \frac{IR_g}{IR_g}$	(c) <i>R</i>	$=\frac{I-I_g}{I}$	(d) $R_{\rm s} = \frac{I - I_g}{I_{\rm s}}$			
$I-I_g$	$I - I_g$		$\frac{I_g R_g}{I_g R_g}$	IR_g			
MCQ # 1	1: (c) MCQ # 2:	(b) MCQ	# 3: (d) MCQ #	4: (b) MCQ # 5: (a)			
MCOs Delete d to "CO	NUEDCION OF CA	IVANOME					
MCQS Related to CO	NVERSION OF GA	LVANUME		AETEK			
1. Voltmeter is used	a to measure:						
(a) Current	(b) Resistance	(c) Te	emperature	(d) Potential difference			
2. To convert a Wes	ston-type galvand	ometer into	voltmeter, the s	series resistance is given by			
(a) $R_h = \frac{V}{I_g}$	(b) $R_h = \frac{v}{I_g} - R_g$	(c) <i>R</i> _{<i>i</i>}	(c) $R_h = \frac{V}{R_g} - I_g$ (d) None of these				
3. The resistance of	f a voltmeter sho	uld have a	very high resista	nce			
(a) It does not disturb	the circuit	(b) It	draws some curr	ent			
(c) It controls the galv	anometer coil	(d) N	one of these				
4. A voltmeter is alw	ways connected i	n circuit to	measure the po	tential difference in			
(a) Parallel	callel (b) Series (c) Perpendicular (d) Straight Line			(d) Straight Line			
5. An ideal voltmete	er has						
(a) Small resistance	(b) High resistan	ce (c) In	finite resistance	(d) None			
MCQ # 2	1: (d) MCQ # 2:	(b) MCQ	# 3: (a) MCQ #	4: (a) MCQ # 5: (c)			
MCQs Related to "CO	NVERSION OF GA	LVANOME	FER INTO OHMM	IETER"			
1. When ohmmeter	gives full scale d	eflection, i	t indicates:				
(a) Zero Resistance	(b) Small Resista	nce (c) In	finite Resistance	(d) None of these			
2. A battery is used	in:	1.56					
(a) Voltmeter	(b) Ammeter	(c) Ga	lvanometer	(d) Ohmmeter			
MCQ # 1: (a) MCQ # 2: (d)							
MCQs Related to the Article "14.11 AVOMETER"							
1. AVO-meter is use	ed to find						
(a) Current	(b) Voltage	(c) Re	esistance	(d) All of above			
2. In AVO meter, the current is measured when number of low resistances are connected with							
galvanometer in:							
(a) Perpendicular	(b) series	(c) pa	rallel	(d) both series and parallel			
3. Useful device to measure resistance, current and potential difference is an electronic							
instrument called:							
(a) Voltmeter (b) Ohmmeter (c) Ammeter (d) Multimeter							
4. Digital version of AVO meter is called:							
(a) Digital ammeter	(b) Digital Rectif	ier (c) Di	gital Multimeter	(d) Digital Voltmeter			
	MCQ # 1: (d)	MCQ # 2: (c)	MCQ # 3: (d)	MCQ # 4: (c)			