MCQs Related to th	e Article "15.1 INDU	JCED EMF AND IN	DUCED CURRENT"	
1. The SI units of	induced emf is			
(a) Ohm	(b) Volt		(c) Henry	(d) Tesla
2. The induced cu	rrent is a circuit car	n be increased by	:	
(a) Using strong ma	gnetic field		(b) Moving loop fas	ter
(c) Replacing the lo	op by the coil of many	turns	(d) All a, b & c	
	enominon by which			
(a) By moving magn	-		(b) By rotating a co	il in it
	towards stationary n	nagnet	(d) All a, b & c	
.,.	-	•	d, the current is pro	duced in it is called
(a) Induced current		electric current	=	ent(d) Direct current
5. emf is induced	• •	ciccii ic cui i ciit	(c) Aiternating curr	che (u) Direct current
	=	.+	(a) Magnetic Flux	(d) Floatria Flyy
a) Charge	(b) Currer	ıı	(c) Magnetic Flux	(d) Electric Flux
MCQ # 1: (b)	MCQ # 2: (d)	MCQ # 3: (d)	MCQ # 4: (a)	MCQ # 5: (c)
MCQs Related to th	e Article "15.2 MOT	IONAL EMF"		
1. The emf induce	ed by motion of cond	luctor across ma	enetic field is called	
(a) Potential Differe	=	c potential	(c) Variable emf	(d) Motional emf
	. ,	=	• •	ar magnetic field, is:
(a) $\varepsilon = vBL$	(b) $\varepsilon = qB$		(c) $\varepsilon = Blq$	(d) $\varepsilon = qvB$
• •				o, then motional emf is:
		ii ougii a iiiagiicti		
(a) $-vBL$	(b) $-\frac{v}{BL}$	I AC	(c) Zero	(d) $-\frac{BL}{v}$
4. Motional emf is	s directly proportion	nal to:		
(a) Velocity of cond	uctor	LOP	(b) Magnetic field s	trength
(c) Length of conduc	n of conductor (d) All a, b & c			
5. The rod of unit length is moving at 30° through a magnetic field of 1 T. If velocity of the rod is				
$1 ms^{-1}$, then in	duced emf in the ro	d will be given by	7:	
(a) 1 V	(b) 0.2 V		(c) 0.5 V	(d) 0.6 V
MCQ # 1: (d)	MCQ # 2: (a)	MCQ # 3: (c)	MCQ # 4: (d)	MCQ # 5: (c)
MCOs Related to th	e Article "15.3 FAR	ADAY'S LAW OF II	NDUCED EMF"	
_				
1. The relation ε	$=-Nrac{\Deltaoldsymbol{\phi}}{\Delta t}$ is known as	:		
(a) Kirchoff's Rule	(b) Amper	e's Law	(c) Faraday's Law	(d) Coulomb's Law
2. The negative si	gn with induced em	f is due to		
(a) Faraday's law	(b) Lenz's	law	(c) Ampere law	(d) None
•	• •		ction, the induced er	• •
proportional to	-		,	,
(a) Magnetic Flux		(b) Induced (Current	
(c) Resistance of coi	1	` ,	nange of magnetic flux	
		• •	g a coil, the induced	
			=	
(a) Increase	(b) Decrea		(c) Remain same	(d) None
=	maucea current an	u resistance of th	e wire through whic	h current is passing is
equal to:	a		() () ()	(1) 711 2
(a) Mutual Inductan			(c) Self Inductance	(d) Eddy Currents
6. The term $\frac{\Delta \phi}{\Delta t}$ ha	s the same dimension	on as:		
(a) Time	(h) Currer	.+	(c) Magnetic Flux	(d) Resistance

MCQ # 1: (c) MCQ # 2: (b) MCQ # 3: (d) MCQ # 4: (c) MCQ # 5: (b) MCQ # 6: (c)

MCQs Related to the Article "15.4 LENZ'S LAW AND DIRECTION OF INDUCED CURRENT"

	i muucea current is	aiways so as to	oppose the chai	ige willo	in causes the current	
is called:			() ()	6 13 TT.		
•	(a) Faraday's law (b) Lenz's law (c) Ohm's law (d) Kirchhoff's rule					
2. Lenz's law is co	nsistent with the la	w of conservation	on of:			
(a)Angular Momenti	um (b) Momei	ntum	(c) Energy	(d) Cha	arge	
3. Lenz's law deal	s with:					
(a) Magnitude of em	f	(b) I	Direction of emf			
(c) Resistance		(d) I	Direction of induc	ed curre	nt	
4. If the magnetic	flux through the cir	cuit through the	e circuit is increa	sing. th	en induced emf acts	
to the m	•	0		σ,		
(a) Increase	(b) Decrea	se	(c) Zero	(d) Nor	ne of these	
					en induced emf acts	
	the magnetic flu		circuit is decire	, ci	ion maacca cim acts	
(a) Increase	(b) Decrea		(c) Zero	(d) Nor	ne of these	
* *	MCQ # 2: (c)		MCQ # 4: (1			
(-)			1114 116	-,	1100 31 ()	
MCOs Related to th	e Article "15.5 MUT	HAL INDUCTION	J"			
			•			
1. The phenomino	on in which changin	g current in one	coil induces em	f in othe	er coil is called:	
(a) Self Induction	_	Induction			(d) Magnetic Flux	
	uctance b/w two co					
	=			ες	(d) $M = -\frac{\left(\frac{\Delta I_P}{\Delta t}\right)}{\varepsilon_S}$	
(a) $M = -\frac{\varepsilon_S}{\Delta I_P}$	(b) $M = $	$-\frac{S}{(\Delta I_P)}$	(c) $M = -\frac{1}{6}$	$\frac{S}{\Delta \phi}$	(d) $M = -\frac{\langle \Delta t \rangle}{\varepsilon_c}$	
		$\left(\frac{\Delta t}{\Delta t}\right)$	(Δt	-5	
3. Inductance is m		. 14	(-) (1)		(1) II	
(a) Volt	(b) Amper	e	(c) Ohms		(d) Henry	
4. 1 henry is equal		IAC				
(a) $1 V A s - 1$	(b) 1 <i>V s A</i>	-1	(c) $1 V m A^{-1}$		(d) $1 V A m^{-1}$	
5. The application	of mutual inductio	n is a	12			
(a) Television (b) Radio (c) Transformer (d) D.C. motor						
6. The mutual ind	uction between two	coils depends u	ipon:			
(a) area of the coils	(b) distance	ce b/w the coils	(c) number of	turns	(d) all of these	
MCQ # 1: (b)		Q # 3: (d) MC	Q # 4: (b) MCQ	# 5: (c)	MCQ # 6: (d)	
MCOs Related to th	e Article "15.6 SELF	INDUCTION"				
			:1 : d	Cin itaa	IGia aalla d	
1. The phenomeno		_				
(a) Self Induction	(b) Mutual		(c) Motional e	nf	(d) Magnetic Flux	
2. The self-inducta	ince may be defined	by				
(a) $L = -\frac{\left(\frac{\Delta I}{\Delta t}\right)}{\varepsilon}$		ε	ε		ΔI	
(a) $L = -\frac{\epsilon}{\varepsilon}$	(b) $L = -$	$-\frac{\Delta I}{\Delta I}$	(c) $L = -\frac{\varepsilon}{\Delta I}$		(d) $L = -\frac{1}{\varepsilon}$	
2 The section Comm		(At)			12	
	erage induced emf to		=			
(a) Self inductance	• •	inductance	(c) Electric Fl	JX	(d) Current	
4. The notation fo						
(a) $Vs^{-1}A^{-1}$	(b) $Vs^{-1}A$		(c) AsV^{-1}		(d) VsA^{-1}	
5. The inductance	is more in self indu	iction in:				
(a) Air cored coil	(b) Iron co	red coil	(c) Plastic cor	ed coil	(d) None of these	
6. Inductance of the	he coil can be increa	sed by using	co	re:		
(a) Diamagnetic (b) Paramagnetic (c) Ferromagnetic (d) None of these						
. ,	of a coil depends u	· ·			-	
(a) Number of turns	-	-	(c) Core mate	rial	(d) All a, b & c	
<u> </u>	# 2: (b) MCQ # 3: (a)		MCQ # 5: (b)	MCQ # 6:		
C (7) 123Q	(v) - 4 ·· (w)	- ()	, c - (-)	<u> </u>		
MCOs Related to th	e Article "15.7 ENEI	RGY STORED IN	AN INDUCTOR"			
1. An inductor is a	circuit element tha	it can store ener	gy in			

(c) Electric field

(d) None

(b) Electric flux

2. Magnetic potential energy stored in an inductor depends upon:

(a) Magnetic field

(a) Square root of the value of current (b) Cube root of the value of current (c) Square of the value of current (d) None of these 3. Energy stored in an inductor is: (a) $\frac{1}{2}LI^2$ (c) $\frac{1}{2}L^2I^2$ (d) $\frac{1}{2}LI$ (b) $\frac{1}{2}LI$ 4. The energy stored per unit volume inside a solenoid is calculated by: (a) $\frac{B^2}{2\mu_0}(Al)$ (b) $\frac{B^2}{2\mu_0}$ $(c)\frac{\mu_0}{2B^2}(Al)$ 5. If an inductor has N turns and ϕ is magnetic flux through its each turn when current I is flowing, then self-inductance L is given by formula: (a) $\frac{1}{N\phi}$ (c) $\frac{N\phi}{r}$ (b) $N\phi$ (d) $N\phi I$ 6. Self inductance of solenoid is: (c) $L = \mu_0 n^2 A l$ (a) $L = \mu_0 nAl$ (b) $L = \mu_0 N^2 A l$ (d) $L = \mu_0 NAl$ MCQ # 4: (b) MCQ # 5: (c) MCQ # 2: (c) MCQ # 1: (a) MCQ # 3: (a) MCQ # 6: (c) MCQs Related to the Article "15.8 ALTERNATING CURRENT GENERATOR" 1. A generator converts mechanical energy into (d) Electrical energy (a) Chemical energy (b) Light energy (c) Heat energy 2. The principle of an alternating current generator is based on: (a) Coulomb's law (b) Ampere's law (c) Faraday's law (d) Lenz's law 3. Alternating current changes (b) Only direction but not magnitude (a) Its magnitude as well as direction (c) Only magnitude but not direction (d) None 4. The induced emf in A.C. generator is (a) $vBL \sin \theta$ (b) $NAB \sin \theta$ (c) $N\omega AB \sin \theta$ (d) NIAB $\sin \theta$ 5. Maximum emf generated in a generator is: (a) $\varepsilon_0 \sin \theta$ (b) $N\omega AB \sin \theta$ (c) $N\omega AB$ (d) None of these 6. Which one is not present in AC generator? (a) Armature (b) Magnet (c) Slip Ring (d) Commutator 7. If the speed of rotation of a generator is doubled, the output voltage will be: (a) Remains same (b) Double (c) Four times (d) One Half MCQ # 1: (d) MCQ # 2: (c) MCQ # 3: (a) MCQ # 4: (c) MCQ # 5: (c) MCQ # 6: (d) MCQ # 7: (b) MCQs Related to the Article "15.9 D.C. GENERATOR" 1. Which of the following is not present in AC generator: (a) Armature (b) Magnet (c) Slip rings (d) Commutator 2. Who invented commutator? (d) Coulomb (a) William Sturgeon (b) William Smith (c) Michael Faraday 3. The coil used in the generators is called (a) Commutator (b) Slip rings (c) Armature (d) None 4. Commutator was invented in: (d) 1840 (a) 1820 (b) 1830 (c) 1834 5. Which part of DC generator prevent the direction of current from changing: (a) Carbon Brushes (b) Armature (c) Commutator (d) Poles of magnet MCQ # 1: (d) MCQ # 2: (a) MCQ # 3: (c) MCQ # 4: (c) MCQ # 5: (c) MCQs Related to the Article "15.10 BACK MOTOR EFFECT IN GENERATORS" 1. The back motor effect exist in the (a) Generator (b) Motor (c) A.C. Motor (d) None 2. A device in a circuit that consumes electrical energy is known as: (b) Capacitance (c) Inductance (a) Resistance (d) Load The torque produced due to induced current in coil of generator that opposes coil's rotation is called: (a) Back generator effect (b) Back motor effect (c) Mutual Inductance (d) Self Inductance MCQ # 1: (a) MCQ # 2: (d) MCQ # 3: (b)

MCQs F.Sc. Physics	Chapter # 15: Electromagnetic Induction			
MCQs Related to the Article "15.	11 D.C. MOTO	R"		
1. A device which converts elec	trical energy	into mechanical en	ergy is called:	
(a) Transformer(b) AC2. The back ward generator is one	generator called	(c) DC motor	(d) DC generator	
(a) Electric motor (b) A.C 3. The working principle of D.C	-	(c) Reverse generat	or (d) None	
	ctifier	(c) DC generator	(d) Transformer	
•	mature	(c) Torque	(d) Source	
_	eld coils	(c) Electric coils	(d) Induction coils	
MCQ # 1: (c) MCQ # 2: (a)	MCQ # 3		· ·	
1156 21 (6)	1226	110€ 1		
MCQs Related to the Article "15.12		ECT IN MOTORS"		
1. Self-induced emf is sometimes of				
(a) Motional emf (b) Constant e		(c) Back emf	(d) Variable emf	
2. When a motor is just started, ba	ick emf is almo	ost		
(a) Maximum (b) Minimum		(c) Infinite	(d) Zero	
3. An over loaded motor draws				
(a) Max. current (b) Min. current	nt	(c) Half	(d) None	
4. When motor is at its Max. speed	the back emf	will be		
(a) Maximum (b) Zero		(c) Cannot tell	(d) None of these	
5. When back emf is zero, an elect	ric motor drav	vs:		
(a) Zero current (b) Steady curr			(d) Maximum Current	
6. When back emf in the motor is		. ,		
(a) Zero current (b) Steady curr			(d) Maximum Current	
MCQ # 1: (c) MCQ # 2: (d)	MCQ # 3: (a)	MCQ # 4: (a) MCQ #	# 5: (d) MCQ # 6: (c)	
		n E		
MCQs Related to the Article "15.13	TRANSFORME	R"		
1. The principle of transformer is				
		(c) Motional emf	(d) None	
2. When constant current flows in of transformer is:	primary of tra	insformer, then the e	mf induced across secondary	
(a) Zero (b) Cor	ıstant	(c) Alternating	(d) Irregular	
3. A transformer is a device which	step up or sto	p down		
(a) Energy (b) Pov	wer	(c) Voltage	(d) All of above	
4. To construct a step down transf	former:			
(a) $N_S > N_P$ (b) N_S	$< N_P$	(c) $N_S = N_P$	(d) $N_S \times N_P = 1$	
5. To construct a step up transform	mer:			
(a) $N_S > N_P$ (b) N_S		(c) $N_S = N_P$	(d) $N_S \times N_P = 1$	
6. An ideal transformer obeys the	-			
-	mentum	(c) Emf	(d) Energy	
7. The coil which is connected to i			C) - 0)	
	ondary	(c) Middle	(d) None	
8. In the actual transformer, the o	•	` '		
	s then input	(c) More than input	(d) None	
9. In ideal transformer when appl	-	•		
(a) Doubled (b) Tri	-	(c) Halved	(d) Same	
(2) 111	r	(-)	(·)	

(b) Iron is cheaper than copper

__ in size.

(c) Zero

(d) Iron makes good permanent magnet

(d) None

10. Why is the core of a transformer made of iron?

11. For a good transformer the hysterics loop are _

(b) Large

(c) Iron can be magnetized or demagnetized easily

(a) Iron is good conductor

(a) Small

12. To minimize the heating effect in the transmission lines

- (a) High current, low voltage in used
- (b) High voltage, low current in used
- (c) Same voltage and current in used
- (d) None

13. A step up transformer has primary voltage of 50 V D.C. the secondary voltage is:

(a) 20 V

- (b) 40 V
- (c) 220 V
- (d) 0 V

14. For an ideal transformer:

- (a) Output Power > Input Power
- (b) *Output Power < Input Power*
- (c) *Output Power = Input Power*
- (d) Output Power = $(Input Power)^2$

15. A laminated iron core is used in transformer and choke to

(a) Increase magnetic flux

(b) Minimize eddy current losses

(c) To conduct current

(d) All a, b & c

16. The power loss in transformer takes place due to:

- (a) Eddy currents
- (b) Magnetic field
- (c) Hysteresis
- (d) Both a & c

17. The efficiency of transformer is given by:

(a)
$$\eta = \frac{Output\ Power}{Input\ Power} \times 100$$

(b)
$$\eta = \frac{Input\ Power}{Output\ Power} \times 100$$

(c) Output Power \times 100

18. The loss of power in transformer can be reduced by

- (a) Using laminated sheets of core material
- (b) Decreasing the resistance of coil
- (c) Proper coupling of primary and secondary coil (d) All a, b & c

19. In a transformer, which of the following quantities has same value in primary and secondary?

- (a) Voltage
- (b) Current
- (c) Resistance
- (d) Rate of change of magnetic flux

20. The core of transformers is laminated to reduce:

- (a) Magnetic Loss
- (b) Hysteresis Loss (c) Eddy current loss (d) Electric loss

MCQ # 1: (b)	MCQ # 2: (a)	MCQ # 3: (C)	MCQ # 4: (b)	MCQ # 5: (a)	MCQ # 6: (a)	MCQ # 7: (a)
MCQ # 8: (b)	MCQ # 9: (c)	MCQ # 10: (c)	MCQ # 11: (a)	MCQ # 12: (b)	MCQ # 13: (d)	MCQ # 14: (c)
MCQ # 15: b()	MCQ # 16: (d)	MCQ # 17: (a)	MCQ # 18: (d)	MCQ # 19 d)	MCQ # 20: (c)	