

Physics 12 Chapter 19 – DAWN OF MODERN PHYSICS Solved MCQ's nload All Subjects Notes from website twww.lasthopestudy.com

MCQs Related to the Article	• "10 1 DEL ATIVE MO"	ΓΙΟΝ"			
			morring wit	th the gread of light	
The physics which deals be	est with behavior of m	icroscopic particles i	noving wit	In the speed of light	
is called:		(h) Deletisistic Meek			
(a) Microscopic Physics		(b) Relativistic Mech			
(c) Newtonian Mechanics		(d) Classical Physics			
	MU) # 1: (b)			
MCQs Related to the Article	e "19.2 FRAMES OF RE	FERENCE"			
1. All motions are					
(a) Absolute	(b) Uniform	(c) Relative	(d) Varia	able	
2. A coordinate system re					
(a) Frame of reference	(b) Infinity Point	(c) Zero point		e of these	
3. A coordinate system in	• •	., .			
on it is called	5	•	, 0	0	
(a) Accelerated frame of refe	rence	(b) Inertial frame of	reference		
(c) Non-inertial frame of refe		(d) None of these			
4. The coordinate system					
(a) Special frame of reference		(b) Inertial frame of	reference		
(c) Non-Inertial frame of refe		(d) Standard frame of		2	
5. Non-Inertial frame of r		(u) Standard Iraine (,	
(a) Zero Acceleration	cici ciice nas.	(b) Non-Zero Accele	ration		
MCQ # 1: (c) MCQ # 2	2: (a) MCQ # 3:			MCQ # 5: (b)	
MCQs Related to the Article	e "19.3 SPECIAL THEO	RY OF RELATIVITY"			
1. In 1905, the special the	ory of relativity was p	proposed by			
(a) Maxwell	(b) De Broglie	(c) Bohr	(d) Eins	tein	
2. An observer shoots par					
length of meter stick is		J J I U	,		
(a) Greater than one meter		(b) Less than one m	eter		
(c) One meter		(d) None of these			
3. Using relativistic effect	s the location of an ai		flight can	he predicted about	
(a) 20 m	(b) 50 m	(c) 760 m	(d) 780	=	
4. 1 kg mass will be equivalent to energy:					
(a) $9 \times 10^8 I$	(b) 9×10^{12} /	(c) $9 \times 10^{16} J$	(d) 9 × 1	10201	
5. The special theory of r	()		(u) 9 × 1	10]	
	-	(a) 2 mantulatas	(d) 1 ma	atulataa	
(a) 1 postulate	(b) 2 postulates	(c) 3 postulates	(d) 4 pos	stulates	
6. The velocity at which the $\sqrt{3}$	-				
(a) $\frac{\sqrt{3}}{2}c$	(b) $\frac{2}{\sqrt{3}}c$	$(c)\frac{\sqrt{3}}{4}c$	(d) <i>c</i>		
7. If the object moves wit	h speed of light, its ma	iss become:			
(a) Zero	(b) Infinity	(c) Remain same	(d) Decr	eases	
MCQ # 1: (d) MCQ # 2: (b)	MCQ # 3: (b) MCC	Q # 4: (c) MCQ # 5: (b	D) MCQ	# 6: (a) MCQ # 7: (b)	
MCQs Related to the Article					
1. Energy of black body ra	adiation depends upor	n:			
(a) Nature of the surface of b	ody	(b) Nature of materi	al of the bo	dy	
(c) Shape and size of the bod	(c) Shape and size of the body (d) Temperature of the body				
2. When Platinum is heat	ed, it becomes cherry	red at:			
(a) 500°C	(b) 900°C	(c) 1100°C	(d) 1300)°C	
3. When Platinum is heat	ed, it becomes orange	at:			
(a) 500°C	_				
4. Platinum wire become					
(a) 900°C	(b) 1100°C	(c) 1300°C	(d) 1600)°С	
5. When Platinum is heat	. ,		(-)=000		
(a) 900°C	(b) 1100°C	(c) 1300°C	(d) 1600)°С	
-					

6.	The relation	on $\lambda_{max}T = Co$	nstant is know	n as					
(a)	Wein's Law	J	(b) Plank's Law	(c) Steph	en Law	(d) N	None	
7.	As the tem	perature of bla	ick body is raise	ed, the v	wavelen	gth corresp	ondin	g to maxim	um intensity
(a)	Shifts towa	rds longer wave	elength	(b) Shifts	s towards sho	orter v	vavelength	
(c)	Remains th	e same		(d) None	of these			
8.	The energ	y radiated is di	rectly proportion	onal to	fourth p	ower of Kel	vin's t	temperatur	e is
	Karl-wein's		(b) Raleigh jeans		· ·		(d) F	Planck's	
		to Stephen's la	w about black b	ody ra	diations	5:			
(a)	$E \propto \frac{1}{T^2}$		(b) $E \propto T^2$	(c) $E \propto T$	4	(d) E	$T \propto T$	
	-	perature, a bo	dy is usually em	its rad	iation of	f:			
(a)	Long wavel	ength	(b) Short Wavele	ength (c) Infinit	e Wavelengt	h	(d) None	of these
11	The name	of photon for q	uantum of light	: was pi	roposed	by			
(a)	Ampere		(b) Planck's	(c) Thom	ison	(d) E	Einstein	
12	The units	of Plank's cons	tant are same as	s that o	f:				
(a)	Energy		(b) Power	(c) Angul	ar frequency	(d) A	ngular mom	entum
13	The value	of Plank's cons	tant h is equal t	:0:					
(a)	6.63×10^{-3}	³⁴ Js	(b) 6.63×10^{-30}	Js (c) 6.63 ×	< 10 ⁻³¹ Js	(d) 6	$.63 \times 10^{34} Js$	5
14.	Linear mo	mentum of a p	hoton is						
. ,	Zero		(b) hf/c		c) hf/c		(d) c		
	Q # 1: (d) Q # 8: (c)	MCQ # 2: (b) MCQ # 9: (c)	MCQ # 3: (c) MCQ # 10: (a)	MCQ # 4		MCQ # 5: (d) MCQ # 12: (d)		1CQ # 6: (a) 1CQ # 13: (a)	MCQ # 7: (b) MCQ # 14: (b)
MC	Q # 0: (C)	MCQ # 9: (C)	MCQ # 10: (a)	MCQ # .	11: (u)	MCQ # 12: (u) [V]	ICQ # 15: (a)	MCQ # 14: (0)
MC	Os Related	to the Article "	PHOTOELECTR	IC EFFE	CT"				
	-		ency falling on r			iects electro	ns. th	is phenome	enon is
	called	suituble n'equ		notai si			110, 011		
	X-ray emis	sion	(b) Compton eff	ect (c) Photo	electric effec	t	(d) Nucle	ear fission
2.	Photoelect	tric effect was e	explained by						
(a)	Hertz		(b) Einstein	(c) Ruthe	erford	(d) E	Bohr	
3.	3. In order to increase the K.E of ejected photoelectrons, there should be an increase in:								
(a)	Frequency	of light	(b) Intensity of li	ight (c) Both a	1 & b	(d) N	lone of these	
4. The amount of energy required to eject an electron from metal surface is called:									
(a)	Threshold f	requency	(b) Work functio	on (c) Comp	ton Shift	(d) P	air productio	on
5. Photon 'A' has twice the energy of photon 'B'. What is the ratio of the momentum of 'A' to that of									
	'B'?								
(a)	4:1		(b) 8:1	(c) 1:2		(d) 2	:1	
6. Stopping potential for a metal surface in case of photo electric emission depends on									
	(a) The threshold frequency for the metal surface (b) The intensity of incident light								
	-	-	ight and the wor				(d) N	None of these	9
7	At stonnin	g potential V _o	the current pas	sing th	rough ci	rcuit is:			

(a)	Minimum	(b) Max	timum	(c) Zero	(d) None o	of these	
8.	The number of e	lectrons emitte	d depends up	on			
(a) Color of target surface			(b) Shape of the surface				
(c)	Frequency of incid	lent light		(d) Intensity of incident light			
9.	The unit of work	function is:					
(a)	Volt	(b) eV		(c) Farad	(d) Hertz		
10.	Application of pl	notoelectric effe	ect is				
(a) Photo diode (b) Photo transisto		oto transistor	(c) Photocell (d) None of these		of these		
11.	11. Potassium cathode in photocell emits electrons for a light that is:						
(a)	X-rays	(b) Infr	ared	(c) Ultraviolet (d) Visible		ġ	
12. Wave nature of light appears in:							
(a)	Pair production	(b) Con	npton Effect	(c) Photoelectric	effect (d) Interference	
	MCQ # 1: (c)	MCQ # 2: (b)	MCQ # 3: (a)	MCQ # 4: (b)	MCQ # 5: (d)	MCQ # 6: (c)	
	MCQ # 7: (c)	MCQ # 8: (d)	MCQ # 9: (b)	MCQ # 10: (a)	MCQ # 11: (d)	MCQ # 12: (d)	

MCQs Related to the Article "COMPTON EFFECT" 1. Compton's effect is associated with: (d) Positive Rays

2. In Compton effect, the law/laws are conserved

2. In Compton eff	ect, the law/laws are conserve	ea		
(a) Energy	(b) Momentum	(c) Both	(d) None of these	
3. The change in wavelength of scattered photon in Compton's effect is:				
(a) $\frac{m_o}{hc}(1-\cos\theta)$	0	$(c)\frac{h}{m_oc}(1+\cos\theta)$	$(d)\frac{h}{m_oc}(1-\cos\theta)$	
4. The factor $\frac{h}{m_o c}$	n Compton equation has dime	nsions of:		
(a) Pressure	(b) Length	(c) Mass	(d) Momentum	
5. Compton shift	is equal to Compton's waveler	igth when the scatter	ed X-ray photons are observed	
at an angle:				
(a) 0°	(b) 45°	(c) 60°	(d) 90°	
6. Compton's shif	It in the wavelength $\Delta \lambda$ is zero,	when scattered angle	e of photon is	
(a) 0°C	(b) 90°C	(c) 180°C	(d) 45°C	
7. A maximum Co	ompton shift in the wavelength	n of scattered photon	will be occur at	
(a) $\theta = 0^{\circ}$	(b) $\theta = 45^{\circ}$	(c) $\theta = 90^{\circ}$	(d) $\theta = 180^{\circ}$	
8. Compton's Effe	ect proves:			
(a) Wave nature of a	radiation	(b) Wave nature of p	article	
(c) Dual nature of m	natter	(d) Particle nature of	fradiation	
	MCQ # 1: (b) MCQ # 2: (c)		Q # 4: (b)	
	MCQ # 5: (d) MCQ # 6: (a)	MCQ # 7: (d) MCC	Q # 8: (d)	
MCQs Related to the Article "PAIR PRODUCTION"				
1. Photon with en	nergy greater than 1.02 MeV ca	an interact with matte	er as	
(a) Photoelectric ef	fect (b) Compton effect	(c) Pair production	(d) Pair annihilation	
2. The minimum	energy needed for a photon to	o create an electron-p	ositron pair is	
(a) 1.02 KeV	(b) 0.51 KeV	(c) 0.51 MeV	(d) 1.02 MeV	
3. The rest mass	energy of an electron in MeV i	s equal to		
(a) 0.511	(b) 0.611	(c) 0.902	(d) 1.02	
4. The anti-partic	cle of electron is	GT		
(a) Proton	(b) Position	(c) Meson	(d) Neutron	
5. The energy of each positron is given by:				
(a) 1.2 MeV	(b) 1.02 MeV	(c) 0.51 MeV	(d) 5.1 MeV	
6. The rest mass	energy of and electron-positro	on pair is:		
(a) 1.2 MeV	(b) 1.02 MeV	(c) 0.51 MeV	(d) 5.1 MeV	
7. Pair production is also called:				
(a) Pair annihilatior	1	(b) Materialization o	f energy	

(a) Pair annihilation (c) Fusion Reaction

1

8. The condition $hf > 2m_o c^2$ refers to:

o. The condition h		5 (0)		
(a) Compton effect			(b) Pair Product	tion
(c) Photoelectric effect	ct		(d) Annihilation	of matter
	MCQ # 1: (c)	MCQ # 2: (d)	MCQ # 3: (a)	MCQ # 4: (b)
	MCQ # 5: (c)	MCQ # 6: (b)	MCQ # 7: (b)	MCQ # 8: (b)

(d) Fission Reaction

MCQs Related to the Article "19.6 ANNIHILATION OF MATTER" When an electron combines with a positron we get

1. When an electro	in combines with a positi	i oli, we get					
(a) One photon	(b) Two photons	c) Three	photons (d) Four photons				
2. Electron is an an	2. Electron is an antiparticle of						
(a) Proton	(b) Photon	(c) Positro	on (d) Deuteron				
3. A positron is a p	article having						
(a) Mass equal to ele	ctron	(b) Charge	e equal to electron				
(c) Equal mass but op	pposite charge to electron	(d) Mass e	(d) Mass equal to proton				
4. The reverse process of pair-production is							
(a) Annihilation	(b) Materializat	ion (c) Fissior	n (d) Fusion				
5. Neutron was discovered in 1932 by							
(a) Bohr	(b) Chadwick	(c) Dirac	(d) Fermi				
MCO # 1	L: (b) MCO # 2: (c)	MCQ # 3: (c) M	ICO # 4: (a) MCO # 5: (b)				

MCQs Related to the Article "19.7 WAVE NATURE OF PARTICLES"					
1. Who gave the id	ea of matter wave?				
(a) De-Broglie	(b) Planck	(c) Einstein	(d) Huygen		
2. Wavelength λ as	sociated with the particle wi	th the particle of ma	ss m and moving with velocity		
v is:					
(a) $\frac{mv}{h}$	(b) $\frac{hv}{m}$	(c) $\frac{h}{mv}$	(d) $\frac{m}{hv}$		
3. Davisson and Ge	ermer indicates in	their experiment			
(a) Electron refraction	on	(b) Electron polariz	ation		
(c) Electron reflectio	n	(d) Electron diffraction			
4. In Davison – Ger	4. In Davison – Germer experiment, the diffracted electron from crystal shows				
(a) Particle property	(b) Wave property	(c) Light property	(d) Quantum property		
5. In electron microscope, electric and magnetic field are used as					
(a) Electromagnetic	gun	(b) Source of electro	omagnetic waves		
(c) Deflected charged	(c) Deflected charged particle (d) Converging source of electrons				
6 has the largest de Broglie wavelength at same speed.					
(a) Proton	(b) α –particle	(c) Neutron	(d) Electron		
MCQ # 1: (a)	MCQ # 2: (c) MCQ # 3: (d)	MCQ # 4: (b) MC	CQ # 5: (d) MCQ # 6: (d)		

MCQs Related to the Article "19.8 UNCERTAINTY PRINCIPLE"

The uncertainty in momentum and position is due to its				
(a) Emotion of certain wave length	(b) Two dimensional motion			
(a) Dran arter of matter and radiation	(d) Vorry high real agitar			

(c) Property of matter and radiation

ons (d) Very high velocity

MCQ # 1: (c)