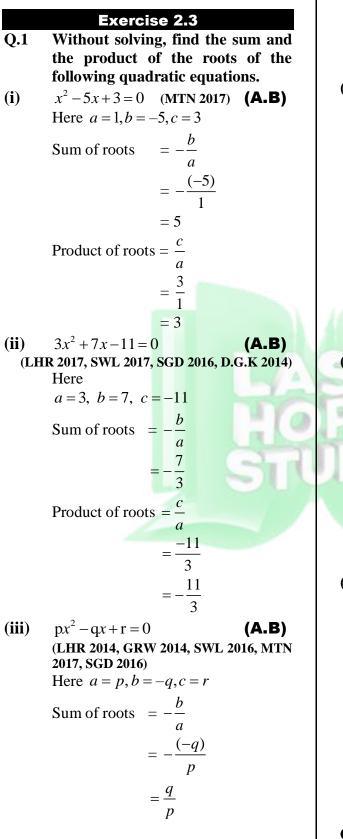
U	nit–2
-	

HOPE Exerci	natics-10 ise 2.3 vebsite ∰ www.lasthopestudy.com
Relation between Roots and Co-efficient of a Quadratic Equation (K.B + U.B)	Note (K.B + U.B)
Roots of standard quadratic equation	(i) $S = -\frac{b}{a} = -\frac{\text{Coefficient of } x}{\text{Coefficient of } x^2}$
$ax^2 + bx + c = 0$ are	
$-b+\sqrt{b^2-4ac}$ $-b-\sqrt{b^2-4ac}$	(ii) $P = \frac{c}{a} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$
$\frac{-b+\sqrt{b^2-4ac}}{2a}$ and $\frac{-b-\sqrt{b^2-4ac}}{2a}$	Quadratic Equation with Given Roots
$-b+\sqrt{b^2-4ac}$ $-b-\sqrt{b^2-4ac}$	(K.B + U.B) A quadratic equation whose roots are given
If $\alpha = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ and $\beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$	can be obtained by using formula
Sum of roots	$x^2 - Sx + P = 0 \qquad \text{Or}$
$-b+\sqrt{b^2-4ac}$ $-b-\sqrt{b^2-4ac}$	$x^2 - ($ Sum of roots $)x +$ Product of roots = 0
$S = \frac{-b + \sqrt{b^2 - 4ac}}{2a} + \frac{-b - \sqrt{b^2 - 4ac}}{2a}$	Example 1: (Page # 26) (A.B)
$=\frac{-b+\sqrt{b^{2}-4ac}+(-b)-\sqrt{b^{2}-4ac}}{4ac}$	Without solving, find the sum and product of roots of the equation
= $2a$	$3x^2 - 5x + 7 = 0$
$=\frac{-2b}{2a}$	Solution:
-2a	$3x^2 - 5x + 7 = 0$
$\Rightarrow S = -\frac{b}{c}$	Here $a = 3, b = -5, c = 7$
<i>a</i> Product of roots	Sum of roots = $S = -\frac{b}{a}$
	$=-\frac{-5}{3}=\frac{5}{3}$
$P = \left(\frac{-b + \sqrt{b^2 - 4ac}}{2a}\right) \left(\frac{-b - \sqrt{b^2 - 4ac}}{2a}\right)$	$=-\frac{1}{3}=\frac{1}{3}$
	Product of roots = $P = \frac{c}{a}$
$\therefore (a+b)(a-b) = a^2 - b^2$	<i>u</i>
$(-b)^2 - (\sqrt{b^2 - 4ac})^2$	$=\frac{7}{3}$
$=\frac{(-b)^{2} - (\sqrt{b^{2} - 4ac})^{2}}{(2a)^{2}}$	To find unknown values involved in
	a given Quadratic Equation
$=\frac{b^2-(b^2-4ac)}{4a^2}$	Example 1: (Page # 27) (A.B)
14	Find the value of h, if the sum of
$=\frac{b^2 - b^2 + 4ac}{4a^2}$ $=\frac{4ac}{4a^2}$	roots is equal to 3-times the
$-\frac{4ac}{2}$	product of roots of the equation: $2^{2} + (0 - C_{1}) + 5^{2} + 0$
$-\frac{1}{4a^2}$	$3x^2 + (9 - 6h)x + 5h = 0.$
$\Rightarrow P = \frac{c}{c}$	Solution: $2r^2 + (0 - 6h)r + 5h = 0$
a	$3x^2 + (9 - 6h)x + 5h = 0$
	I


Unit-2

Theory of Quadratic Equations

Here a = 3, b = 9 - 6h, c = 5hLet α, β be the roots of given equation Then $\alpha + \beta = -\frac{b}{a} = -\frac{9-6h}{3} = \frac{6h-9}{3}$ $\alpha\beta = \frac{c}{a} = \frac{5h}{3}$ And According to given condition Sum of roots = 3(Product of roots) $\alpha + \beta = 3\alpha\beta$ $\frac{6h-9}{3} = 3\left(\frac{5h}{3}\right)$ 6h - 9 = 15h6h - 15h = 9-9h = 9h = -1

Unit-2

Theory of Quadratic Equations

Product of roots =
$$\frac{c}{a}$$

= $\frac{r}{p}$
(iv) $(a+b)x^2 - ax + b = 0$ (A.B)
(BWP 2014, 17)
Here
 $A = a + b, B = -a, C = b$
Sum of roots = $-\frac{B}{A}$
 $= -\frac{-a}{a+b}$
 $= \frac{a}{a+b}$
Product of roots = $\frac{C}{A}$
 $= \frac{b}{a+b}$
(v) $(l+m)x^2 + (m+n)x + n - 1 = 0$
Here
 $a = l + m, b = m + n, c = n - l$
Sum of roots = $S = -\frac{b}{a}$
 $= -\frac{m+n}{l+m}$
Product of roots = $P = \frac{c}{a}$
 $= \frac{n-l}{l+m}$
(vi) $7x^2 - 5mx + 9n = 0$ (A.B)
Here
 $a = 7, b = -5 m, c = 9n$
Sum of roots $= -\frac{b}{a}$
 $= -\frac{-5m}{7}$
 $= \frac{5m}{7}$
Product of roots = $\frac{c}{a}$
 $= \frac{9n}{7}$
Q.2 Find the value of k, if

Unit-2	Theory of Quadratic Equations
(i) Sum of the roots of the equati $2kx^2 - 3x + 4k = 0$ is twice to product of the roots. (A.	the Product of roots = $P = -a$
Solution:	$=\frac{5k}{1}$
Let α , β be the roots of equation	=5k
$2kx^2 - 3x + 4k = 0$	According to given condition:
Here	$S = \frac{3}{D}$
a = 2k, b = -3, c = 4k	$S = \frac{3}{2}P$
$S = \alpha + \beta = -\frac{b}{a}$ $= \frac{-(-3)}{2k}$ $= \frac{3}{2k}$	$-3\mathbf{k}+7=\frac{3}{2}(5\mathbf{k})$
-(-3)	2(-3k+7) = 3(5k)
$=\frac{1}{2k}$	-6k + 14 = 15k
3	14 = 15k + 6k
$=\frac{1}{2k}$	14 = 21k
	14 ,
$P = \alpha \beta = \frac{c}{a}$	$\frac{14}{21} = k$
4k	$\frac{2}{3} = k$
$=\frac{4k}{2k}$	$\frac{-1}{3} = k$
=2	
According to given condition	Or $k = \frac{2}{3}$
S = 2P	Q.3 Find k ,
$\frac{3}{2k} = 2 \times 2$	(i) If sum of squares of the roots of
2k	the equation $4kx^2 + 3kx - 8 = 0$ is 2.
$\frac{3}{2k} = \frac{4}{1}$	
$3 \times 1 = 4 \times 2k$ 3 = 8k	$4kx^2 + 3kx - 8 = 0$
3	Here $a = 4k, b = 3k, c = -8$
$\frac{3}{8} = k$	Let α , β be the roots
$k = \frac{3}{2}$	Sum of roots = $\alpha + \beta = -\frac{b}{a}$
(ii) Sum of the roots of the equati	ion 3k
$x^{2} + (3k - 7)x + 5k = 0$ is $\frac{3}{2}$ times t	ine i
product of the roots. (A.E Solution:	$\Rightarrow \alpha + \beta = -\frac{3}{4}$
$x^{2} + (3k - 7)x + 5k = 0$	Product of roots = $\alpha\beta = \frac{c}{c}$
Here, $a = 1, b = 3k - 7, c = 5k$	a
· · · · · · · · · · · · · · · · · · ·	$=\frac{-8}{4k}$
Sum of roots = $S = \frac{-b}{a}$	
$\frac{a}{3k-7}$	$\Rightarrow \alpha\beta = \frac{-2}{k}$
$=-\frac{3k-7}{1}$	$\rightarrow \alpha p - \frac{k}{k}$
=-3k+7	According to given condition
	$\alpha^2 + \beta^2 = 2$
	EXAMPLE $4^{-1} p^{-2}$

MATHEMATICS –10 Unit-2

\mathbf{U}_{n}	it-2	Theory of Quadratic Equations
	$(\alpha + \beta)^2 - 2\alpha\beta = 2$	Putting the values
	Putting the values	$(2k)^2 - 2(2k+1) = 6$
		$4k^2 - 4k - 2 - 6 = 0$
	$\left(-\frac{3}{4}\right)^2 - 2\left(-\frac{2}{k}\right) = 2$	$4k^2 - 4k - 8 = 0$
	9,4	$4\left(k^2-k-2\right)=0$
	$\frac{9}{16} + \frac{4}{k} = 2$	$Or \qquad k^2 - k - 2 = 0$
	$\frac{4}{k} = 2 - \frac{9}{16}$	$k^2 - 2k + k - 2 = 0$
		k(k-2)+1(k-2)=0
	$\frac{4}{k} = \frac{32 - 9}{16}$	(k-2)(k+1)=0
		Either
	$\frac{4}{k} = \frac{23}{16}$	$k-2=0 \qquad \text{or} \qquad k=2$
\rightarrow	$\frac{k}{4} = \frac{16}{23}$	k+1=0 $k=-1$
\rightarrow		$\kappa = -1$ Result
	$k = \frac{64}{23}$	k = 2, -1
(;;)	29	Q.4 Find <i>p</i> , if
(ii)	Sum of the squares of the roots of the equation $x^2 - 2kx + (2k+1) = 0$	(i) The roots of the equation $2^2 + 2^2 = 0$ lift 1
		$x^2 - x + p^2 = 0$ differ by unity.
Solut	is 6. (A.B)	(FSD 2015) (A.B) Let α, β be the roots of given equation.
Solut	Here	Here $a=1$, $b=-1$, $c=p^2$
	a = 1, b = -2k, c = 2k + 1	Then $\alpha + \beta = -\frac{b}{-b}$
	Let, α, β be the roots of given	a
	equation,	$=-\left(\frac{-1}{1}\right)$
	Then	(1)
	Sum of roots $= \alpha + \beta = -\frac{b}{a}$	
	$\left(-2k\right)$	$\alpha\beta = \frac{c}{a}$
	$=-\left(\frac{-2k}{1}\right)$	$=\frac{p^2}{2}$
	= 2k	1
	Product of roots $= \alpha \beta = \frac{c}{\alpha}$	$= p^2$
	a	According to given condition $\alpha - \beta = 1$
	$=\frac{2k+1}{1}$	Taking square on both sides
	= 2k + 1	$(\alpha - \beta)^2 = 1$
	According to given condition	$\therefore (\mathbf{a} + \mathbf{b})^2 - (a - b)^2 = 4ab$
	$\alpha^2 + \beta^2 = 6$	$(\alpha + \beta)^2 - 4\alpha\beta = 1$
	Or $(\alpha + \beta)^2 - 2\alpha\beta = 6$	Putting the values

MATHEMATICS –10 Unit-2

Unit-2	Theory of Quadratic Equations
Unit-2 $(1)^{2} - 4p^{2} = 1$ $1 - 4p^{2} = 1$ $1 - 1 = 4p^{2}$ $0 = 4p^{2}$ Or $p^{2} = 0$ By taking square root $p = 0$ Result: $p = 0$ (i) The roots of the equation $x^{2} + 3x + P - 2 = 0$ differ by 2. Solution: (A.B) $x^{2} + 3x + P - 2 = 0$ Here $a = 1, b = 3, c = P - 2$ Let roots of given equation are α, β Then sum of roots $= \alpha + \beta = -\frac{b}{a}$	(i) The roots of the equation $x^2 - 7x + 3m - 5 = 0$ satisfy the relation $3\alpha + 2\beta = 4$ (A.B) Solution: $x^2 - 7x + 3m - 5 = 0$ Here $a = 1, b = -7, c = 3m - 5$ Let α, β be the roots of given equation Then sum of roots $= \alpha + \beta = -\frac{b}{a}$ $= -\frac{-7}{1}$ $\Rightarrow \alpha + \beta = 7 \rightarrow (i)$ Product of roots $= \alpha\beta = \frac{c}{a}$ $= \frac{3m - 5}{1}$ $\Rightarrow \alpha\beta = 3m - 5 \rightarrow (ii)$
$= -\frac{3}{1}$ $\Rightarrow \alpha + \beta = -3$ Product of roots $= \alpha\beta = \frac{c}{a}$ $= \frac{P-2}{1}$ According to given condition	According to given condition $3\alpha+2\beta=4 \rightarrow (iii)$ Multiply equation (i) by '2' $2\alpha+2\beta=14 \longrightarrow (iv)$ Sub. Equation (iii) & (iv) $3\alpha+2\beta=4$ $\underline{-2\alpha\pm 2\beta=\underline{14}}$ $\alpha = -10$
$\alpha - \beta = 2$ Taking square of both sides $(\alpha - \beta)^2 = 4$ $(\alpha + \beta)^2 - 4\alpha\beta = 4$ Putting the values $(-3)^2 - 4(P - 2) = 4$ 9 - 4P + 8 = 4 9 + 8 - 4 = 4P 13 = 4P Or $P = \frac{13}{4}$	Put in equation (i) $\alpha + \beta = 7$ $-10 + \beta = 7$ $\beta = 7 + 10$ $\beta = 17$ Putting the values of α and β in equation (ii) $\alpha\beta = 3m - 5$ $-10(17) = 3m - 5$ $-170 + 5 = 3m$ $\frac{-165}{3} = m$
Result: $P = \frac{13}{4}$ Q.5 Find m, if	Or $m = -55$ Result: m = -55

Unit-2

(ii)	The roots of the equation $2 \cdot 7 \cdot 2 \cdot 5 = 0$
	$x^2 + 7x + 3m - 5 = 0$ satisfy the
	relation $3\alpha - 2\beta = 4$ (A.B) Let α, β be the roots of given
	equation equation equation a, b be the foots of given
	Here
	a = 1, b = 7, c = 3m - 5
	Then
	$\alpha + \beta = -\frac{b}{a}$
	$=\frac{-7}{1}$
	$\alpha + \beta = -7 \longrightarrow (i)$
	$\alpha\beta = \frac{c}{a}$
	$=\frac{3m-5}{1}$
	$\alpha\beta = 3m - 5 \longrightarrow (ii)$
	Also given
	$3\alpha - 2\beta = 4 \longrightarrow (iii)$
	Multiply equation (i) by 2
	$2\alpha + 2\beta = -14 \longrightarrow (iv)$
	Adding equation (iii) and (iv) $3\alpha - 2\beta = 4$
	$\underline{2\alpha + 2\beta = -14}$
	$5\alpha = -10$
	$\alpha = -\frac{10}{5}$
	$\Rightarrow \alpha = -2$
	Put in equation (i)
	$\alpha + \beta = -7$
	$-2 + \beta = -7$
	$\beta = -7 + 2$ $\beta = -5$
	Now putting the values in equation (ii)
	$\alpha\beta = 3m - 5$
	-2(-5) = 3m - 5
	10 + 5 = 3m
	15 = 3m
	$\frac{15}{3} = m$
	3 MATHEMATI

Theory of Quadratic Equations

	5 = m Result: $m = 5$
(iii)	$3x^2 - 2x + 7m + 2 = 0$ (A.B) Here $a = 3, b = -2, c = 7m + 2$
	Let α, β be the roots of given equation
	Then sum of roots = $\alpha + \beta = -\frac{b}{a}$
	$=-\frac{a}{-2}$
	$\Rightarrow \alpha + \beta = \frac{2}{3} \longrightarrow (i)$
	Product of roots = $\alpha\beta = \frac{c}{a}$
	$=\frac{7m+2}{3}\longrightarrow$ (ii)
	Also given
5	$7\alpha - 3\beta = 18 \longrightarrow$ (iii) Multiply equation (i) by '3'
	$3\alpha + 3\beta = 2 \longrightarrow (iv)$
	Adding equation (iii) and (iv) $7\alpha - 3\beta = 18$
	$\underline{3\alpha + 3\beta = 2}$
	$10\alpha = 20$
	$\Rightarrow \alpha = 2$ Put in equation (i)
	$\alpha + \beta = \frac{2}{3}$
	$2 + \beta = \frac{2}{3}$
	$\beta = \frac{2}{3} - 2$
	$=\frac{2-6}{3}$
	$\beta = \frac{-4}{3}$
	Now putting the values of α and β in
	equation (ii) (-4) $7m+2$
	$2\left(\frac{-4}{3}\right) = \frac{7m+2}{3}$
	-8 = 7m + 2 -8 - 2 = 7m

MATHEMATICS -10 Unit-2

	10 – 7m			
	-10 = 7m -10		(ii)	$4x^2 - (3+5m)x - (9m-17) = 0$
	$\frac{-10}{7} = m$			(A.E
	Result:			Here
	$m = \frac{-10}{7}$			a = 4, b = -(3+5m), c = -(9m-17)
	$m = \frac{1}{7}$			Let α , β be the roots
Q.6	roots of the	sum and product of the e following equations is given number λ .		Then $\alpha + \beta = -\frac{b}{a}$
	equal to a g	(A.B)		$=-\frac{-(3+5m)}{4}$
(i)	$(2m+3) r^{2} + 1$	(7m-5)x+(3m-10)=0		7
(1)	Here	(1111 - 3)x + (3111 - 10) = 0		$=\frac{3+5m}{4}$
		=7m-5 and $c = 3m-10$		4
L		roots of given equation,		And $\alpha\beta = \frac{c}{2}$
Ľ	-			a
	Then $\alpha + \beta$	$=-\frac{b}{a}$		$=\frac{-(9m-17)}{4}$
		7m-5	16	4
		$=-\frac{7m-5}{2m+3}$		According to given condition: $\alpha + \beta = \lambda$ and $\alpha\beta = \lambda$
			2	
		$=\frac{5-7m}{2m+3}$		$\Rightarrow \alpha + \beta = \alpha \beta$
	And w?	$=\frac{c}{c}$		Transitive property of equality Putting the values
	And $\alpha\beta$	$=\frac{1}{a}$		
		$=\frac{3m-10}{2m-10}$	1	$\frac{3+5m}{4} = \frac{-(9m-17)}{4}$
		$\overline{2m+3}$	\rightarrow	3 + 5m = -9m + 17
	-	given condition		5m + 9m = 17 - 3
	$\alpha + \beta = \lambda = \alpha$			14m = 14
		nsitive property)	\Rightarrow	m = 1
	$\Rightarrow \alpha + \beta = \alpha$			Result: $m=1$
	Putting the va			
	$\frac{5-7m}{2m+2} = \frac{3m}{2m}$	$\frac{-10}{2+3}$		
	2m+3 $2mOr$	2+3		
	5-7m=3m	-10		
		ncellation property)		
	-7m - 3m = -7m - 3m			
	-10m = -15			
	$m = \frac{-15}{-10}$			
	$\Rightarrow m = \frac{3}{2}$			
	2			
	Result:	$m = \frac{3}{2}$		