Watch Video Explanation of these notes on our website: www.LastHopeStudy.Com

Unit-2		Theory of Quadratic Equations	
	LAST HOPE STUDY	ematics-10 ercise 2.5 om website () www.lasthopestudy.com	
Q.1	Exercise 2.5 Write the quadratic equations having following roots. (a) 1, 5 (K.B + A.B) (b) 4, 9 (K.B + A.B) (c) -2, 3 (K.B + A.B) (d) 0, -3 (K.B + A.B) (e) 2, -6 (K.B + A.B) (f) -1, -7 (K.B + A.B)	$x^{2} - Sx + P = 0$ $x^{2} - (-3)x + 0 = 0$ (K.B + A.B) $x^{2} + 3x = 0$ (e) (LHR 2014, 16, GRW 2016, 17, SG 2017, D.G.K 2017) Roots of required equation are 2, -6 Sum of roots = S = 2 + (-6) = -4 Product of roots = P = 2(-6) = -12	
Solut (a)	Roots of required equation are 1, 5 Then sum of roots = $S = 1 + 5 = 6$ And product of roots = $P = 1 \times 5 = 5$ \therefore Required quadratic equation is:	(f) $x^{2} - (-4)x + (-12) = 0$ $x^{2} + 4x - 12 = 0$ (K.B + A.E (LHR 2015, 17, RWP 2016 Roots of required equation are -1	
(b)	$x^{2} - Sx + P = 0$ $x^{2} - 6x + 5 = 0$ (FSD 2016, 17, RWP 2017, RWP 2017 Roots of required equation are 4, 9 Then sum of roots = S = 4 + 9 = 13 And product of roots = P = 4×9 = 36 ∴ Required quadratic equation is: $x^{2} - Sx + P = 0$	(g) $x^{2} + 8x + 7 = 0$ 1+i, 1-i (K.B + A.E (K.B + A.E	
(c)	$x^{2} - 13x + 36 = 0$ (LHR 2014, 16, GRW 2016, 17, SGI 2017, D.G.K 2017) Roots of required equation are -2, 3 Then sum of roots = S = -2 + 3 = 1 And product of roots = P = -2(3) = -6 ∴ Required quadratic equation is: $x^{2} - Sx + P = 0$	Product of roots $= S = (1+i)+(1-i)$ = 1+i+1-i = 2 Product of roots $= P = (1+i)(1-i)$ $= (1)^2 - (i)^2$	
(d)	$x^{2}-1x+(-6)=0$ (K.B + A.B) $x^{2}-x-6=0$ (SGD 2014, BWP 2017) Roots of required equation are 0, -3 Then sum of roots = S = 0 + (-3) = -3 And product of roots = P = 0(-3) = 0 ∴ Required quadratic equation is:	$= 1 - i^{2}$ $= 1 - (-1)$ $= 1 + 1$ $= 2$ Required quadratic equation is	

Watch Video Explanation of these notes on our website: www.LastHopeStudy.Com

Un	it-2	Theory of Quadratic Equations
(h)	$x^{2}-2x+2=0$ Roots of required equation are $3+\sqrt{2}, 3-\sqrt{2}$ (K.B + A.B)	(FSD 2015) (K.B + A.B) Sum of roots = S = $(2\alpha+1)(2\beta+1)$ = $2\alpha+1+2\beta+1$ = $2\alpha+2\beta+2$
	Sum of roots = $(3+\sqrt{2})+(3-\sqrt{2})$ = $3+\sqrt{2}+3-\sqrt{2}$ = 6 Product of roots = $(3+\sqrt{2})(3-\sqrt{2})$	$= 2\alpha + 2\beta + 2$ = 2(\alpha + \beta) + 2 = 2(3) + 2 = 6 + 2 = 8
	$= (3)^{2} - (\sqrt{2})^{2}$ = 9 - 2 = 7 ∴ Required quadratic equation is	Product of roots = P = $(2\alpha + 1)(2\beta + 1)$ = $4\alpha\beta + 2\alpha + 2\beta + 1$ = $4(6) + 6 + 1$ = $24 + 7 = 31$
	$x^{2} - Sx + P = 0$ $x^{2} - 6x + 7 = 0$	∴ Required quadratic equation is: $x^2 - Sx + P = 0$
Q.2	If α , β are the roots of the equation $x^2 - 3x + 6 = 0$. Form equations whose roots are	(b) $\begin{aligned} x^2 - 8x + 31 &= 0\\ \text{Roots of required equation are } \alpha^2, \ \beta^2\\ \text{Sum of roots} &= \mathbf{S} = \alpha^2 + \beta^2 \end{aligned}$
	(a) $2\alpha + 1, 2\beta + 1$ (b) α^2, β^2	$= (\alpha + \beta)^{2} - 2\alpha\beta$ = (3) ² - 2(6) = 9 - 12
	(c) $\frac{1}{\alpha}, \frac{1}{\beta}$	$= -3 (\textbf{K}.\textbf{B} + \textbf{A}.\textbf{B})$ Product of roots = $P = \alpha^2 \beta^2$
	(d) $\frac{\alpha}{\beta}, \frac{\beta}{\alpha}$ (e) $\alpha + \beta, \frac{1}{\alpha} + \frac{1}{\beta}$	$= (\alpha\beta)^{2}$ $= (6)^{2}$
Solut	ion: (K.B + A.B)	= 36 ∴ Required quadratic equation is: $x^2 - Sx + P = 0$
	$x^2 - 3x + 6 = 0$ Here $a = 1, b = -3, c = 6$ Roots of given equations are α, β	$x^{2} - (-3)x + 36 = 0$ $x^{2} + 3x + 36 = 0$
	Then $\alpha + \beta = -\frac{b}{a}$	(c) Roots of required equation are $\frac{1}{\alpha}, \frac{1}{\beta}$
	$= -\frac{-3}{1}$ $= 3$	(K.B + A.B) Sum of roots = $S = \frac{1}{\alpha} + \frac{1}{\beta}$
	$\alpha\beta = \frac{c}{a} = \frac{6}{1} = 6$	$= \frac{\beta + \alpha}{\alpha \beta}$ $= \frac{\alpha + \beta}{\alpha \beta}$
(a)	Roots of required equation are $2\alpha + 1, 2\beta + 1$	$=\frac{3}{6}$

MATHEMATICS -10 Unit-2

Watch Video Explanation of these notes on our website: www.LastHopeStudy.Com

Unit-2	Theory of Quadratic Equations
$=\frac{1}{2}$	(e) Roots of required equation,
2	$\alpha + \beta, \frac{1}{\alpha} + \frac{1}{\beta}$ (K.B + A.B
Product of roots = $P = \frac{1}{\alpha} \cdot \frac{1}{\beta}$	a p
•	$S = (\alpha + \beta) + \left(\frac{1}{\alpha} + \frac{1}{\beta}\right)$
$=\frac{1}{lphaeta}$	$(\beta + \alpha)$
$=\frac{1}{6}$	$= \left(\alpha + \beta\right) + \left(\frac{\beta + \alpha}{\alpha\beta}\right)$
6 ∴ Required quadratic equation is:	$=(\alpha+\beta)+\left(\frac{\alpha+\beta}{\alpha\beta}\right)$
$x^2 - Sx + P = 0$	$=(\alpha + \beta) + (-\alpha\beta)$
2 1 1 0	$=3+\frac{3}{6}=\frac{18+3}{6}$
$x^2 - \frac{1}{2}x + \frac{1}{6} = 0$	0 0
Multiply by '6' $6x^2 - 3x + 1 = 0$	$=\frac{21}{6}=\frac{7}{2}$
0	$P = \left(\alpha + \beta\right) \left(\frac{1}{\alpha} + \frac{1}{\beta}\right)$
d) Roots of required equation are $\frac{\alpha}{\beta}, \frac{\beta}{\alpha}$	
(K.B + A.B)	$= (\alpha + \beta) \left(\frac{\beta + \alpha}{\alpha \beta} \right)$
$S = \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta}$	
p at op	$=3\left(\frac{3}{6}\right)$
$=\frac{\left(\alpha+\beta\right)^2-2\alpha\beta}{\alpha\beta}$	(2)
-7-	$=(3)\left(\frac{1}{2}\right)$
$=\frac{(3)^2-2(6)}{6}$	$P = \frac{3}{2}$
6 9-12 -3	2 Required equation is
$=\frac{3-12}{6}=\frac{-3}{6}$	$x^2 - Sx + P = 0$
$\Rightarrow S = -\frac{1}{2}$	$x^2 - \frac{7}{2}x + \frac{3}{2} = 0$
2	Multiplying by (2)
$P = \frac{\alpha}{\beta} \times \frac{\beta}{\alpha}$	$2x^2 - 7x + 3 = 0$
$ \Rightarrow P = 1 $	Q.3 If α , β are the roots of the equation $v^2 + pv + \alpha = 0$ form equations when
Required quadratic equation is	$x^2 + px + q = 0$ form equations who roots are:
$x^2 - Sx + p = 0$	(a) α^2, β^2 (FSD 2015)
Or $x^2 - \left(-\frac{1}{2}\right)x + 1 = 0$	(b) $\frac{\alpha}{\beta}, \frac{\beta}{\alpha}$
	$β^{\dagger} \alpha$ Solution:
$x^2 + \frac{1}{2}x + 1 = 0 \text{(Multiplying by 2)}$	$x^2 + px + q = 0$
$2x^2 + x + 2 = 0$	Here
	a=1, b=p, c=q

a=1, b=p, c=qRoots of given equation are α, β

Unit-2

Theory of Quadratic Equations

Then
$$\alpha + \beta = -\frac{b}{a} = -p$$

 $\alpha\beta = \frac{c}{a} = q$
(a) Roots of required equation are α^2, β^2
(K.B + A.B)
Sum of roots = $S = \alpha^2 + \beta^2$
 $= (\alpha + \beta)^2 - 2\alpha\beta$
 $= (-P)^2 - 2q$
 $= p^2 - 2q$
Product of roots = $P = \alpha^2\beta^2$
 $= (\alpha\beta)^2$
 $= (q)^2$
 $= q^2$
 \therefore Required quadratic equation is
 $x^2 - Sx + P = 0$
 $x^2 - (p^2 - 2q)x + q^2 = 0$
(b) Roots of required equation are $\frac{\alpha}{\beta}, \frac{\beta}{\alpha}$
 $= \frac{\alpha^2 + \beta^2}{\alpha\beta}$
 $= \frac{p^2 - 2q}{q}$
Product of roots = $S = \frac{\alpha}{\beta} + \frac{\beta}{\alpha}$
 $= \frac{1}{2}$
 \therefore Required quadratic equation is:
 $x^2 - Sx + P = 0$
 $\Rightarrow x^2 - \frac{p^2 - 2q}{q}x + 1 = 0$
Multiply by 'q'
 $qx^2 - (p^2 - 2q)x + q = 0$