Unit-2

Theory of Quadratic Equations

LAST Mather	matics-10 cise 2.8						
Download All Subjects Notes from website Www.lasthopestudy.com							
Problems Leading to Quadratic Equations (A.B + K.B + U.B) Example 1: (Page # 43) Three less than a certain number multiplied by 9 less than twice the number is 104. Find the number. Solution: Let the required number = x Then, three less than the number = $x-3$ And, 9 less than twice the number = $2x-9$ According to given condition (x-3)(2x-9) = 104 $2x^2 - 9x - 6x + 27 - 104 = 0$ $2x^2 - 15x - 77 = 0$ $2x^2 - 22x + 7x - 77 = 0$ 2x(x-11) + 7(x-11) = 0 (x-11)(2x+7) = 0 Either x-11 = 0 or $2x+7 = 0\Rightarrow x = 11 or x = -\frac{7}{2}Result:Thus, required number is either 11 or -\frac{7}{2}Example 2: (Page # 44) (A.B)The length of rectangle is 4cm morethan its breadth. If the area ofrectangle is 45cm2. Find its sides.Solution:Let breadth of rectangle = xThen, length of rectangle = xThen, length of rectangle = x + 4Area of rectangle = 45cm^2$	According to given condition x(x+4) = 45 $x^2 + 4x - 45 = 0$ $x^2 + 9x - 5x - 45 = 0$ x(x+9) - 5(x+9) = 0 (x+9)(x-5) = 0 Either x+9=0 or $x-5=0\Rightarrow x=-9 or x=5(Neglecting -ve value)\therefore x+4=5+4=9Result:Thus, the breadth is 5cm and length is 9cmExercise 2.8Q.1 The product of two positiveconsecutive numbers is 182. Find thenumbers. (A.B)Solution:Let two positive consecutivenumbers are x, x+1According to given condition:x(x+1) = 182x^2 + x - 182 = 0x^2 + 14x - 13x - 182 = 0x(x+14) - 13(x+14) = 0(x+14)(x-13) = 0Eitherx+14=0$ or $x-13=0x=-14$ $x=13(Ignore negative value)Therefore,x=13\Rightarrow x+1=13+1=14Result:Thus, required Numbers are 13 and 14.$						

Watch Video Explanation of these notes on our website: www.LastHopeStudy.Com

Unit-2 Q.2 The sum of squares of three positive consecutive numbers is 77.

Find the numbers. (A.B + K.B)(SWL 2015)

Solution:

0.3

Let three consecutive numbers are x, x+1, x+2According to given condition: $x^{2} + (x+1)^{2} + (x+2)^{2} = 77$ $x^{2} + x^{2} + 2x + 1 + x^{2} + 4x + 4 - 77 = 0$ $3x^2 + 6x - 72 = 0$ $3(x^2+2x-24)=0$ $x^{2} + 2x - 24 = 0$ $x^{2} + 6x - 4x - 24 = 0$ x(x+6)-4(x-6)=0(x+6)(x-4)=0Either x+6=0or x - 4 = 0x = -6x = 4(Ignore negative value) Therefore. x = 4x+1=4+1=5 \Rightarrow & x + 2 = 4 + 2 = 6**Result:** Thus required numbers are 4, 5 and 6. The sum of five times a number and the square of the numbers is 204. (A.B + K.B)Solution: Let required number = xFive times of the number = 5xAccording to given condition: $x^2 + 5x = 204$ $x^{2} + 5x - 204 = 0$ $x^{2} + 17x - 12x - 204 = 0$ x(x+17)-12(x+17)=0(x+17)(x-12)=0Either x + 17 = 0or x - 12 = 0x = -17x = 12**Result:**

Thus required number is either -17 or 12.

Theory of Quadratic Equations

```
The product of five less than three
O.4
        times a certain number and one
        less than four times the number
        is7. Find the number.
                                (A.B + K.B)
Solution:
        Let the required number is x
        Five less than three times the
        number = 3x - 5
        One less than four times a
        number = 4x - 1
        According to given condition
        (3x-5)(4x-1)=7
        12x^2 - 3x - 20x + 5 - 7 = 0
        12x^2 - 23x - 2 = 0
        12x^2 - 24x + x - 2 = 0
        12x(x-2)+1(x-2)=0
        12x(x-2)+1(x-2)=0
        (x-2)(12x+1) = 0
        Either
                                12x + 1 = 0
        x - 2 = 0
                       or
                               12x = -1
        x = 2
                               x = \frac{-1}{12}
        Result:
        Thus, required number is either 2
        or -\frac{1}{12}.
        The difference of a number and its
Q.5
       reciprocal is \frac{15}{4}. Find the number.
                                (A.B + K.B)
Solution:
        Let, required number is x
        Reciprocal of the number = \frac{1}{x}
       Difference of the numbers = \frac{15}{4}
        According to given condition
       x - \frac{1}{x} = \frac{15}{4}
        \frac{x^2-1}{x} = \frac{15}{4}
```

By cross multiplication

Watch dy.Com **C**+ / ·

Un	Unit-2 Theory of Quadratic Equation					
	$4x^{2} - 4 = 15x$ $4x^{2} - 15x - 4 = 0$ $4x^{2} - 16x + x - 4 = 0$ 4x(x-4) + 1(x-4) = 0	Q.7 The sum of the co-ordinates of a point is 9 and sum of their squares is 45. Find the co-ordinates of the point (A B + K B				
	(x-4)(4x+1) = 0 Either x-4=0 or 4x+1=0 $x=4 \qquad 4x=-1$ $x = \frac{-1}{4}$ Result: Thus, required number is either 4 or $\frac{-1}{4}$	Solution: Let required point is (x, y) According to condition I $x + y = 9 \longrightarrow (i)$ According to condition II $x^2 + y^2 = 45 \longrightarrow (ii)$				
Q.6	The sum of a number of two digits of a positive integral number is 65 and the number is 9 times the sum of its digits. Find the number.	Equation (i) \Rightarrow $x = 9 - y \longrightarrow$ (iii) Put in equation (ii) $(9 - y)^2 + y^2 = 45$ $81 - 18y + y^2 + y^2 = 45$ $2y^2 - 18y + 81 - 45 = 0$ $2y^2 - 18y + 36 = 0$ $2(y^2 - 9y + 18) = 0$ $y^2 - 9y + 18 = 0$ $y^2 - 6y - 3y + 18 = 0$				
Solut	ion: Let unit's digit = x And ten's digit = y \therefore Required number = $10y + x$ According to given condition (I) $x^2 + y^2 = 65 \longrightarrow (i)$ According to condition (II) 10y + x = 9(x + y) 10y + x = 9x + 9y 10y - 9y = 9x - x $y = 8x \longrightarrow (ii)$					
	Put in equation (i) $x^{2} + (8x)^{2} = 65$ $x^{2} + 64x^{2} = 65$ $65x^{2} = 65$ $x^{2} = 1$ Taking positive square root x = 1 Put in equation (ii)	y(y-6)-3(y-6) = 0 (y-6)(y-3)=0 Either y-6=0 or y-3=0 y=6 y=3 Put in equation (iii)				
	y = 8(1) y = 8 Required number = $10y + x$ = 10(8) + 1 = 80 + 1 = 81	x = 9 - 6 $x = 9 - (3)$ $x = 3$ $x = 9 - 3$ $x = 6$ Result: Thus, required point is either				
	Result: Thus, required number is 81	(3,6) or $(6,3)$				

Watch Video Explanation of these notes on our website: www.LastHopeStudy.Com

<u>Unit-2</u>			Theory of Quadratic Equations			
Q.8	Find two integers w and the difference of is also 9.	vhose sum is 9 of their squares (A.B + K.B)	Q.10	Find the dimension whose perimeter	ons of a rectangle, is 80cm and its	
Solut	ion:	()		area is $375cm^2$	(K.B + A.B)	
Let two integer are <i>x</i> and y			Solution:			
	According to condition I $x + y = 9 \longrightarrow (i)$ According to condition (ii) $x^2 - y^2 = 9 \longrightarrow (ii)$ Equation (i) $\Rightarrow y = 0$, $x \longrightarrow (iii)$			Let length of rectangle = $x \text{ cm}$ And width of rectangle = $y \text{ cm}$ According to condition-I 2(x + y) = 80		
	Put in equation (ii)	$y = x \longrightarrow (m)$	\therefore perimeter=2(length+ width)			
	$r^{2} - (9 - r)^{2} - 9$			$x + y = 40 \longrightarrow (i$)	
	$x^{2} - (81 - 18x + x^{2}) = 9$		x + y = +0			
			\therefore Area = length \times width			
	$x^2 - 81 + 18x - x^2 = 9$			According to cond	1t10n-11	
	$\Rightarrow x = 5$		18	$xy = 375 \longrightarrow (ii)$)	
	Put in equation (iii)			From equation (i)		
	y = 9 - 5 = 4		-	$y = 40 - x \longrightarrow (i$	ii)	
	Kesult: Thus required number	rs are 5 and A		Put in (ii)		
Q.9	9 Find two integers whose difference		(40) 275			
-	is 4 and whose squ	ares differ by		x(40-x) = 373		
	72.	(A.B + K.B)		$40x - x^2 - 375 =$	0	
Solut	Solution: Let the integers are x and y According to condition-I		$-x^2 - 40 - 375 = 0$			
			$x^2 - 40x + 375 = 0$			
	$x - y = 4 \longrightarrow (i)$		$x^{2} - 25x - 15x + 275 = 0$			
	According to condition-II			x - 23x - 13x + 373 = 0		
	$x^2 - y^2 = 72 \longrightarrow$ (ii) Equation (i) $\Rightarrow x = y + 4 \longrightarrow$ (iii)		x(x-25)-15(x-25)=0 (x-25)(x-15)=0			
	Put in equation (ii)		Either	x - 25 = 0 or	x - 15 = 0	
	$\left(y+4\right)^2 - y^2 = 72$			x = 25	x = 15	
	$y^2 + 8y + 16 - y^2 = 72$		Put in	equation (iii)		
	8y = 72 - 16		i at m	v = 40 = 25	y = 40 = 15	
	8y = 56			y = 40 - 25	y = 40 - 15 y = 25	
	\Rightarrow y = 7 Put in equation (iii)		D. 1	y = 13	y = 23	
	x = 7 + 4 x = 11		Kesuit:			
			Dimension of rectangle are either 25cm by			
	Result:	1.1	15cm	or 15cm by 25cm.		
	Thus, required intege	rs are 11 and 7.				