$\mathbf{U}_{\mathtt{ni}}$	t-2	Theo	ory of Quadratic Equations		
		Mathematics-10			
HOP	E	Miscellaneous Exercise			
STUD					
	Download All Su	ibjects Notes from website	www.iastnopestudy.com		
Q.1	Multiple Choice	Questions	ion Tick (1) the compations		
(i)	If α β are the root	ts of $3r^2 + 5r - 2 = 0$ then $\alpha + \beta$ is:	$(\mathbf{K}_{\mathbf{B}} + \mathbf{A}_{\mathbf{B}})$		
(1)	If α, β are the root	(LHR 2017, SWL 2014, MTN 2015, 17,	SGD 2015, 17, RWP 2016, D.G.K 2016)		
	(a) $\frac{5}{-}$	(b) $\frac{3}{2}$			
	(u) 3	(3) 5			
	$\underline{(c)} \frac{-5}{2}$	(d) $\frac{-2}{2}$			
(;;)	3	3			
(II)	If α, β are the root	$x \text{ or } 7x - x + 4 = 0$, then $\alpha \beta$ is; (LHR 2014)	(R.D + U.D) GRW 2014 15 FSD 2016 RWP 2016)		
	1		, OK (* 2014, 13, 150 2010, D (* 1 2010)		
	(a) $\frac{-}{7}$	<u>(b)</u> –			
	(-) 7	(1) -4			
	(c) $\frac{-}{4}$	(d) $\frac{-7}{7}$			
(iii)	Roots of the equation	ion $4x^2 - 5x + 2 = 0$ are;	(K.B + A.B)		
	(a) Irrational	(b) Imagin	nary		
	(c) Rational	(d) None	of these		
(iv)	Cube roots of -1 a	ire;	(K.B + U.B)		
	$()$ 1 2	(LHR 2017, GRW 2017, SWL 2017, MT	[°] N 2014, 17, SGD 2015, 16, D.G.K 2017)		
	$(\underline{a}) - 1, -\omega, -\omega^2$	(b) $-1, \omega,$	$-\omega^2$		
	(c) $-1, -\omega, \omega^2$	(d) $1, -\omega, -\omega$	$-\omega^2$		
(v)	Sum of the cube ro	oots of unity is;	(K.B + A.B)		
	$(\underline{a}) 0$	(b) 1			
	(c) -1	(d) 3			
(VI)	Product of cube roots of unity is; (K.B + A.B)				
	(a) 0	(b) 1	5D 2013, 17, D W1 2010, 17, K W1 2017)		
	(c) -1	$\overline{\mathbf{(d)}}$ 3			
(vii)	If $b^2 - 4ac < 0$, then	n the roots of $ax^2 + bx + c = 0$ are;	(GRW 2014) (K.B + A.B)		
	(a) Irrational	(b) Ration	al		
	(c) Imaginary	(d) None	of these		
(viii)	If $b^2 - 4ac > 0$, but	not a perfect square then roots of	$ax^{2} + bx + c = 0$ are; (K.B)		
	(a) Imaginary	(b) Ration	(LHR 2014, BWP 2017) al		
	(c) Irrational	(d) None	of these		
(:)		× /			
(IX)	$\frac{-+}{\alpha}$ is equal to;		(N.B T U.B)		
		(LHR 2014, 15, GRW 2016, FSD 2	017, BWP 2017, RWP 2016, SGD 2017)		

MATHEMATICS -10 Unit-2

Un	it-2	Theory of Quadratic Equations
	(a) $\frac{1}{\alpha}$	(b) $\frac{1}{\alpha} - \frac{1}{\beta}$
	(c) $\frac{\alpha - \beta}{\alpha \beta}$	$\underline{(\mathbf{d})} \; \frac{\alpha + \beta}{\alpha \beta}$
(x)	$\alpha^2 + \beta^2$ is equal to;	(U.B + A.B)
	(LHR	2014, 15, GRW 2014, 17, FSD 2016, BWP 2015, RWP 2016, 17)
	(a) $\alpha^2 - \beta^2$	$(\mathbf{b}) \ \frac{1}{\alpha^2} + \frac{1}{\beta^2}$
	$\underline{(\mathbf{c})}\left(\alpha+\beta\right)^2-2\alpha\beta$	(d) $\alpha + \beta$
(xi)	Two square roots of unity are;	(U.B + A.B)
	(LHR 2015, 16, GRW	7 2014, FSD 2015, 16, MTN 2016, SGD 2016, D.G.K 2015, 16, 17)
	<u>(a)</u> 1,-1	(b) 1, <i>ω</i>
	(c) 1,- <i>w</i>	(d) ω, ω^2
(xii)	Roots of the equation $4x^2 - 4x + $	-1=0 are; (U.B + A.B)
	(LHR	2015, GRW 2017, FSD 2016, BWP 2015, MTN 2017, SGD 2016)
	(a) Real equal	(b) Real unequal
	(c) Imaginary	(d) Irrational
(xiii)	If α , β are the roots of $px^2 + qx$	$+r=0$, then sum of the roots 2α and 2β is; (K.B)
	(a) $\frac{-q}{2}$	(b) $\frac{r}{r}$
	p p	p
	(a) $-2q$	(d) q
	$\underline{\mathbf{(l)}}_{p}$	(u) $-\frac{1}{2p}$
(xiv)	If α , β are the roots of $x^2 - x - 1$	= 0, then product of the roots 2α and 2β is; (U.B)
		(FSD 2014, 17, BWP 2016, D.G.K 2015, 16, 17)
	(a) -2	(b) 2
	(c) 4	<u>(d)</u> –4
(xv)	The nature of the roots of equa	tion $ax^2 + bx + c = 0$ is determined by; (A.B)
		(GRW 2016, SWL 2015, 2017, MTN 2015)
	(a) Sum of the roots	(b) Product of the roots (d) Discriminant
((c) Synthetic division The discriminant of $ar^2 + br + a$	$(\mathbf{u}) \text{ Discriminant} \qquad (\mathbf{K} \mathbf{P} + \mathbf{A} \mathbf{P})$
(XVI)	(LHR 2016, FSD 2017, SV	= 01s; (K.D + A.D) VL 2016, 17, RWP 2014, 16, SGD 2016, MTN 2015, D.G.K 2016)
	(a) $b^2 - 4ac$	(b) $b^2 + 4ac$
	$\overline{(\mathbf{c})} -b^2 + 4ac$	(d) $-b^2 - 4ac$
	4	NSWER KEY

(i)	c	(v)	a	(ix)	D	(xiii)	с
(ii)	b	(vi)	b	(x)	С	(xiv)	d
(iii)	b	(vii)	c	(xi)	Α	(xv)	d
(iv)	a	(viii)	c	(xii)	Α	(xvi)	a

Unit-2

Unit-2
Theory of Quadratic Equations
Q.2
(i) Discuss the nature of the roots of the following equations. (A.B)
Solution:
(a)
$$x^2 + 3x + 5 = 0$$

Here $a = 1, b = 3, c = 5$
Disc $= b^2 - 4ac$
 $= (3)^2 - 4(1)(5)$
 $= 9 - 20$ (AB)
(GRW 2016, SGD 2014, RWP 2017, D.G.K 2016)
Here $a = 2, b = -7, c = 3$
 $c = (-7)^2 - 4(2)(3)$
 $= 49 - 24$
 $= 25$
Since disc > 0 and perfect square roots are rational and unequal.
(a) $16x^2 - 8x + 1 = 0$ (A.B)
Here $a = 1, b = 6, c = -1$
Disc $= b^2 - 4ac$
 $= (-6)^2 - 4(1)(-1)$
 $= 36 + 4$
 $= (-1)^2 - (4-3)^2$
(By putting values)
 $= 1 + \frac{-1 + \sqrt{-3}}{2}$
(By putting values)
 $= 1 + \frac{-1 + \sqrt{-3}}{2} + \frac{-1 - \sqrt{-3}}{2}$
(By putting values)
 $= 1 + \frac{-1 + \sqrt{-3}}{2} + \frac{-1 - \sqrt{-3}}{2}$
(By putting values)
 $= 1 + \frac{-1 + \sqrt{-3}}{2} + \frac{-1 - \sqrt{-3}}{2}$
(BY putting values)
 $= 1 + \frac{-1 + \sqrt{-3}}{2} - \frac{-1 - \sqrt{-3}}{2}$
(BY putting values)
 $= 1 + \frac{-1 + \sqrt{-3}}{2} - \frac{-1 - \sqrt{-3}}{2}$
(BY putting values)
 $= 1 + \frac{-1 + \sqrt{-3}}{2} - \frac{-1 - \sqrt{-3}}{2}$
(BY putting values)
 $= 1 + \frac{-1 + \sqrt{-3}}{2} - \frac{-1 - \sqrt{-3}}{2}$
 $= 0$
(iv) Find the product of complex cube roots of unity. (A:B + K.B)
Ans. $= (1) \times \left(\frac{-1 + \sqrt{-3}}{2}\right) \left(\frac{-1 - \sqrt{-3}}{2}\right)$
 $= \frac{(-1)^2 - (\sqrt{-3})^2}{4}$
 $= \frac{(-1)^2 - (\sqrt{-3})^2}{4}$

MATHEMATICS-10 Unit-2

of all cube

Unit-2

(v)

(vi)

Show that: (viii) $x^{3} + y^{3} = (x + y)(x + \omega y)(x + \omega^{2} y)$ $3\omega^2$. (A.B + K.B)Solution: $x^{3}+y^{3}=(x+y)(x+\omega y)(x+\omega^{2}y)$ Ans. (SGD 2015, BWP 2016) **Proof:** R.H.S $= (x+y)(x+\omega y)(x+\omega^2 y)$ $= (x+y)(x^{2}+\omega^{2}xy+\omega xy+\omega^{3}y^{2})$ $= (x+y) \left[x^2 + (\omega^2 + \omega) xy + (1) y^2 \right] \because \omega^3 = 1$ $= (x+y) \left[x^2 + (-1)xy + y^2 \right] \because 1 + \omega + \omega^2 = 0$ $= (x+y) \left[x^2 - xy + y^2 \right]$ (ix) $= x^{3} + v^{3}$ = L.H.SProved Solution: **Evaluate:** $\omega^{37} + \omega^{38} + 1$ (A.B + K.B)Solution: 2 $\omega^{37} + \omega^{38} + 1$ $= \omega^{36} \cdot \omega + \omega^{36} \cdot \omega^{2} + 1$ $= (\omega^3)^{12} . \omega + (\omega^3)^{12} . \omega^2 + 1$ **(x)** $= (1)^{12} . \omega + (1)^{12} . \omega^{2} + 1$ $= \omega + \omega^2 + 1$ Solution: = 0 $\therefore \omega^{37} + \omega^{38} + 1 = 0$ Evaluate $(1-\omega+\omega^2)^{\circ}$ (vii) 2 (A.B + K.B)Solution: $(1 - \omega + \omega^2)^6$ $= [1 + \omega^2 - \omega]^6$ (xi) $=(-\omega-\omega)^{6}$ $=(-2\omega)^{6}$ $=(-2)^{6}\omega^{6}$ $= 64(\omega^3)^2$ Solution: $= 64(1)^2$ = 64(1)= 64

Theory of Quadratic Equations If ω is cube root of unity, form an equation whose roots are 3ω and (A.B + K.B)Roots of required equation are 3ω and $3\omega^2$. Sum of roots = S = $3\omega + 3\omega^2$ $=3(\omega + \omega^2)$ = 3(-1)= -3Product of roots = $P = (3 \omega)(3 \omega^2)$ $=9\omega^3$ = 9(1)= 9 : Required quadratic equation is $x^2 - Sx + P = 0$ $x^{2} - (-3)x + 9 = 0$ $x^2 + 3x + 9 = 0$ Use synthetic division, find the remainder and quotient when $(x^3+3x^2+2) \div (x-2)$. (A.B) $P(x) = x^3 + 3x^2 + 2$ $=x^{3}+3x^{2}+0x+2$ 3 0 2 2 10 20 5 22 \therefore Remainder = 22 $Q(x) = x^2 + 5x + 10$ Use synthetic division, show that x-2 is the factor $x^{3}+x^{2}-7x+2$. (A.B + K.B) $P(x) = x^3 + x^2 - 7x + 2$ Since remainder is zero, x - 2 is a factor of given polynomial. Find the sum and product of the roots of the equation $2Px^2 + 3qx - 4r = 0$ (A.B + K.B) $2Px^2 + 3qx - 4r = 0$ Here a = 2P, b = 3q, c = -4rSum of roots $=\frac{-b}{a}$

Unit-2

Theory of Quadratic Equations

$$= -\frac{3q}{2p}$$
Product of roots $= \frac{c}{a}$

$$= \frac{-4r}{2P}$$

$$= -\frac{2r}{p}$$
(xii) Find $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$ when α , β are of the roots of the equation $x^2 - 4x + 3 = 0$. (A.B + K.B)
Solution:
 $x^2 - 4x + 3 = 0$. (A.B + K.B)
Solution:
 $x^2 - 4x + 3 = 0$. (A.B + K.B)
Then sum of roots $= \alpha + \beta = -\frac{b}{a}$
 $= -\frac{-4}{1}$

$$= 4$$
Product of roots $= \alpha\beta = \frac{c}{a}$
 $\alpha\beta = \frac{3}{1}$
 $\alpha\beta = 3$
Consider
 $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\beta^2 + \alpha^2}{\alpha^2\beta^2}$
 $= \frac{\alpha^2 + \beta^2}{(\alpha\beta)^2}$
 $= \frac{(\alpha + \beta)^2 - 2\alpha\beta}{(\alpha\beta)^2}$
 $= \frac{(4)^2 - 2(3)}{(3)^2}$
 $= \frac{16 - 6}{9}$
 $\Rightarrow \frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{19}{9}$

Unit-2	Theory of Quadratic Equations
(xiii) If α , β are the roots of $4x^2 - 3x + 6 = 0$, find (A.B) (a) $\alpha^2 + \beta^2$ (b) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ (c) $\alpha - \beta$ Solution: $4x^2 - 3x + 6 = 0$ Roots of given equation are α , β $\alpha + \beta = -\frac{-3}{2}$	$= \sqrt{\frac{9-96}{16}}$ $= \sqrt{-\frac{87}{16}}$ $\Rightarrow \alpha - \beta = \frac{\sqrt{-87}}{4}$ (xiv) If α , β are the roots of $x^2 - 5x + 7 = 0$, find an equation whose roots are
$\alpha + \beta = \frac{4}{4}$ $= \frac{3}{4}$ $\alpha \beta = \frac{6}{4}$	(a) $-\alpha, -\beta$ (b) $2\alpha, 2\beta$ Solution: $x^2 - 5x + 7 = 0$ Roots of given equation are α, β
$= \frac{2}{2}$ (a) $\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta$ (A.B) $= \left(\frac{3}{4}\right)^{2} - 2\left(\frac{3}{2}\right)$ $= \frac{9}{16} - 3$	$\alpha + \beta = -\frac{3}{1}$ $= 5$ $\alpha\beta = \frac{7}{1}$ $\alpha\beta = 7$ (a) Roots of required equation are
$= \frac{9-48}{16}$ $\Rightarrow \alpha^2 + \beta^2 = \frac{-39}{16}$ (b) $\frac{\alpha}{4} + \frac{\beta}{4} = \frac{\alpha^2 + \beta^2}{16}$ (A-B)	$-\alpha, -\beta$ Sum of roots = S = -\alpha + (-\beta) = - (\alpha + \beta) = -5 Prod. Of roots = P = (-\alpha)(-\beta) = \alpha\beta
(b) $\beta^{+}\alpha^{-} \alpha\beta$ $= \frac{-39/16}{3/2}$ $= \frac{-39}{16} \times \frac{2}{3}$	$= 7$ $\therefore \text{ Required equation is:}$ $x^{2} - Sx + P = 0$ $x^{2} - (-5)x + 7 = 0$ $x^{2} + 5x + 7 = 0$ (b) Roots of required equation are $2\alpha, 2\beta$ (A.B)
$\Rightarrow \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{-13}{8}$ (c) $\alpha - \beta = \sqrt{(\alpha - \beta)^2}$ (A.B) $= \sqrt{(\alpha + \beta)^2 - 4\alpha\beta}$ $\sqrt{(3)^2 - (3)}$	Sum of roots = S = $2\alpha + 2\beta$ = $2(\alpha + \beta)$ = $2(5)$ =10 Prod. Of roots = P = $(2\alpha)(2\beta)$ = $4\alpha\beta$ = $4(7)$
$= \sqrt{\left(\frac{3}{4}\right)^{2} - 4\left(\frac{3}{2}\right)^{2}}$ $= \sqrt{\frac{9}{16} - 6}$ MATHERMATIC	=28 \therefore Required quadratic equation is: $x^2 - Sx + P = 0$ $x^2 - 10x + 28 = 0$ S. 10 Unit. 2

Uni	it-2 Theory of Quadratic E	quations
Q.3	Fill in the blanks	
(i)	The discriminant of $ax^2 + bx + c = 0$ is	(K.B)
(ii)	If $b^2 - 4ac = 0$, then roots of $ax^2 + bx + c = 0$ are	(K.B)
(iii)	If $b^2 - 4ac > 0$, then the roots of $ax^2 + bx + c = 0$ are	(K.B)
(iv)	If $b^2 - 4ac < 0$, then the root of $ax^2 + bx + c = 0$ are	(K.B)
(v)	If $b^2 - 4ac < 0$ and perfect square, then the roots of $ax^2 + bx + c = 0$ are	(K.B)
(vi)	If $b^2 - 4ac < 0$ and not a perfect square, then roots of $ax^2 + bx + c = 0$ are	(K.B)
(vii)	If α , β are the roots of $ax^2 + bx + c = 0$, then sum of the roots is	(K.B)
(viii)	If α , β are the roots of $ax^2 + bx + c = 0$, then product of the roots is	(K.B)
(ix)	If α , β are the roots of $7x^2 - 5x + 3 = 0$, then sum of the roots is	(K.B)
(x)	If α , β are the roots of $5x^2 + 3x - 9 = 0$, then product of the roots is	(K.B)
(xi)	For a quadratic equation $ax^2 + bx + c = 0$, $\frac{1}{\alpha\beta}$ is equal to	(K.B)
(xii)	Cube roots of unity are	(K.B)
(xiii)	Under usual notation sum of the roots of unity is	(K.B)
(xiv)	If 1, ω , ω^2 are the cube roots of unity, then ω^{-7} is equal to	(K.B)

- (xv) If α , β are the roots of the quadratic equation, then the quadratic equation is written as
- (xvi) If 2ω and $2\omega^2$ are the roots of an equation, then equation is_____

MATHEMATICS-10 Unit-2