

Mathematics-9

Exercise 2.1

Download All Subjects Notes from website www.lasthopestudy.com

Some Important Sets

Natural Numbers (D.G.K 2018) (K.B)

The numbers 1,2,3,...which we use for counting certain objects are called natural numbers or positive integers.

It is denoted by N.

i.e.
$$N = \{1, 2, 3, ...\}$$

Whole Numbers (RWP 2019) (K.B)

If we include 0 in the set of natural number, the resulting set is called set of Whole Numbers.

It is denoted by W.

i.e.,
$$W = \{0,1,2,3,...\}$$

Integers

(RWP 2019) (K.B)

The set of integers consist of positive counting numbers, 0 and negative counting numbers.

It is denoted by Z.

i.e.
$$Z = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$

or
$$Z = \{0, \pm 1, \pm 2, \pm 3, ...\}$$

Rational Numbers

(K.B)

All numbers of the form $\frac{p}{q}$ where p,q are integers and q is not zero are called rational numsbers. **For example**, $\frac{2}{3}$, $-\frac{5}{4}$ etc.

It is denoted by *Q*.

i.e.
$$Q = \left\{ \frac{p}{q} \mid p, q \in Z \land q \neq 0 \right\}$$

Irrational Numbers

(K.B)

The numbers which cannot be expressed as $\frac{p}{q}$, where p and q are integers are called

irrational numbers. **For example**, π , $\sqrt{3}$ etc. It is denoted by Q'.

i.e.,
$$Q' = \left\{ x \mid x \neq \frac{p}{q}, p, q \in Z \land q \neq 0 \right\}$$

Real Numbers

(K.B)

The union of the set of rational numbers and irrational numbers is known as the set of real numbers.

It is denoted by R,

i.e.,
$$R = Q \cup Q'$$

Note

(U.B)

 $N \subset W \subset Z \subset O$ (i)

i.e. $N \subset W \subset Z \subset Q \subset R$

a. are disjoint sets

For each prime number p, \sqrt{p} is an (ii) irrational number

(iii) Square roots of all positive nonsquare integers are irrational

Types of Decimal Fraction (K.B)

There are three types of decimal fractions:

- (i) Terminating decimal fractions
- (ii) Recurring and non-terminating decimal fractions
- (iii) Non-terminating and non- recurring decimal fraction

Types of Rational Numbers (K.B)

There are two types of rational numbers:

- (i) Terminating decimal fractions
- (ii) Recurring and non-terminating decimal fractions

Terminating Decimal Fractions

(K.B)

The decimal fraction in which there are finite number of digits in its decimal part is called a **terminating decimal** fraction.

For example:
$$\frac{2}{5} = 0.4$$
, $\frac{3}{8} = 0.375$ etc.

Recurring and Non-terminating

Decimal Fractions (K.B)

The decimal fraction (non-terminating) in which some digits are repeated again and again in the same order in its decimal part is called **recurring and non-terminating** decimal fraction.

For example:

$$\frac{2}{9} = 0.2222..., \frac{4}{11} = 0.363636...$$
 etc.

Non-Recurring and Non-terminating

Decimal Fractions (K.B)

The decimal fraction (non-terminating) in which some digits are not repeated again and again in the same order in its decimal part is called **non-recurring and non-terminating** decimal fraction.

These numbers are also called **irrational numbers**.

For example:

$$\sqrt{2} = 1.414213..., \pi = 3.141592...$$
 etc.

Representation of Real Numbers on

Number Line

(K.B)

The real number are represented geometrically by points on a number line ℓ Such that each real number 'a' corresponds to one and only one point on number line ℓ and to each point p on number line ℓ there corresponding precisely one real number.

Exercise 2.1

Q.1 Identity which of the following are rational and irrational numbers?

(U.B)

Part #	Number	Type	
(i)	$\sqrt{3}$	Irrational number	
(ii)	$\frac{1}{6}$	Rational number	
(iii)	π	Irrational number	
(iv)	$\frac{15}{2}$	Rational number	
(v)	7.25	Rational number	
(vi)	√29	Irrational number	

Q.2 Convert the following fractions into decimal fractions.

(i)
$$\frac{17}{25}$$

(U.B)

Solution: $\frac{17}{25}$

$$\begin{array}{r}
0.68 \\
25) 170 \\
-150 \\
\hline
200 \\
-160 \\
40
\end{array}$$

$$\Rightarrow \frac{17}{25} = 0.68 \, \mathbf{Ans}$$

(ii)
$$\frac{19}{4}$$

(A.B)

Solution:
$$\frac{19}{4}$$

$$\begin{array}{r}
4.75 \\
4)19.000 \\
16 \\
\hline
30
\end{array}$$

$$\frac{28}{20} \\
\frac{20}{0} \\
\Rightarrow \frac{19}{4} = 4.75 \text{ Ans}$$
(iii) $\frac{57}{8}$ (A.B)

Solution:
$$\frac{57}{8}$$
 $\frac{7.125}{8)}$
 57
 $\frac{-56}{10}$
 $\frac{8}{20}$
 $\frac{-16}{40}$
 $\frac{40}{0}$

$$\Rightarrow \frac{57}{8} = 7.125 \text{ Ans}$$

(iv)
$$\frac{205}{18}$$
 (A.B)

Solution:
$$\frac{205}{18}$$

$$11.388$$

$$18)205.000$$

$$25$$

$$\frac{18}{70}$$

$$-54$$

$$160$$

$$-144$$

$$160$$

$$-144$$

$$16$$

$$208$$

$$18$$

$$\Rightarrow \frac{205}{18} = 11.3889 \text{ Ans}$$

Unit - 2

Real and Complex Numbers

(v)
$$\frac{5}{8}$$
 (A.B)

8
Solution:
$$\frac{5}{8}$$

$$0.625$$
8) 5.000
$$\frac{48}{20}$$

$$\frac{-16}{40}$$

$$-40$$

$$\Rightarrow \frac{5}{8} = 0.625$$
 Ans

(vi)
$$\frac{25}{38}$$

(A.B)

Solution:
$$\frac{25}{38}$$
 0.65789...

$$\Rightarrow \frac{25}{38} = 0.65789 \text{ Ans}$$

Which of the following statements Q.3are true and which are false?

(U.B)

Part	Statement	T/F
(i)	$\frac{2}{3}$ is an irrational number	False
(ii)	π is an irrational number	True
(iii)	$\frac{1}{9}$ is a terminating fraction	False

(iv)	$\frac{3}{4}$ is a terminating fraction	True
(v)	$\frac{4}{5}$ is a recurring fraction	False

Q.4 Represent the following numbers on the number line.

(i)
$$\frac{2}{3}$$
 (A.B)

(ii)
$$-\frac{4}{5}$$
 (A.B)

(iii)
$$1\frac{3}{4}$$
 (A.B)

(iv)
$$-2\frac{5}{8}$$
 (A.B) $-2\frac{5}{8}$

$$(v)$$
 $2\frac{3}{4}$ $(SWL 2019)$ (A.B)

$$(2)$$
 $2\frac{3}{4}$ (SWL 2019) **(A.B)**

$$= \sqrt{4+1} = \sqrt{2^2 + 1^2}$$

Watch Video Explanation of these notes on our website: www.LastHopeStudy.Com

Unit - 2

Real and Complex Numbers

 $(\text{Hypoteneus})^2 = (\text{Base})^2 + (\text{Perpencicular})^2$ $\overline{OB} = \sqrt{5}$

Q.5 Give a rational number between

$$\frac{3}{4}$$
 and $\frac{5}{9}$

(A.B)

(LHR 2019, SGD 2017)

Solution:

Rational number between

$$\frac{3}{4} \text{ and } \frac{5}{9}$$

$$= \left[\frac{3}{4} + \frac{5}{9}\right] \div 2$$

$$= \left[\frac{27 + 20}{36}\right] \div 2$$

$$= \frac{47}{36} \times \frac{1}{2}$$

$$= \frac{47}{72}$$

Q.6 Express the following recurring decimals as the rational number $\frac{p}{q}$ where p,q are integer and $q \neq 0$.

(i) $0.\overline{5}$ (A.B)

Solution:

Suppose

$$x = 0.\overline{5}$$

$$x = 0.555...$$

Multiplying both sides by 10

 $10 \times x = 10 \times 0.555...$

$$10x = 5.555...$$

$$10x = 5 + 0.555...$$

$$10x = 5 + x$$

$$10x - x = 5$$

$$9x = 5$$

$$x = \frac{5}{9}$$

$$\therefore 0.\overline{5} = \frac{5}{9}$$

(ii) $0.\overline{13}$ (RWP 2019, D.G.K 2017) **(A.B)** Solutions:

Suppose

$$x = 0.\overline{13}$$

$$x = 0.131313...$$

Multiplying both sides by 100

$$100x = 100 \times 1.131313...$$

$$100x = 13.1313...$$

$$100x = 13 + 0.1313...$$

$$100x = 13 + x$$

$$100x - x = 13$$

$$99x = 13$$

$$x = \frac{13}{99}$$

$$0.\overline{13} = \frac{13}{99}$$

(iii) 0.67

(A.B)

Solutions:

Suppose

$$x = 0.67$$

$$x = 0.676767...$$

Multiplying both sides by 100

$$100 \times x = 100 \times 0.676767...$$

$$100x = 67.6767...$$

$$100x = 67 + 0.6767...$$

$$100x = 67 + x$$

$$100x - x = 67$$

$$99x = 67$$

$$x = \frac{67}{99}$$

$$\therefore 0.\overline{67} = \frac{67}{99}$$