

Mathematics-9

Exercise 2.3

RADICAL AND RADICANDS

Concept of Radicals and Radicands

If n is a positive integer greater than 1 and a is a real number, then any real number xsuch that $x^n = a$ is called the nth root of a, and in symbols is written as:

$$x = \sqrt[n]{a}$$
 or $x = (a)^{1/n}$.

In the radical $\sqrt[n]{a}$, the symbol $\sqrt{\ }$ is called the radical sign, n is called the index of the radical and the real number a under the radical sign is called the radicand or base.

Note

(K.B)

 $\sqrt[3]{a}$ is usually written as \sqrt{a}

Difference between Radical form and

Exponential form

In radical form radical sign is used, $x = \sqrt[n]{a}$ is a radical form.

For example: $\sqrt[3]{x}$, $\sqrt[5]{x^2}$ etc.

In exponential form, exponent is used in place of radicals. $x = (a)^{1/n}$ is exponential form.

For example: $x^{3/2}$, $(z)^{2/7}$ etc.

Properties of Radicals

(U.B)

Let $a, b \in \mathbb{R}$ and m, n be positive integer. Then.

(i)
$$\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$$

(ii)
$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

(iii)
$$\sqrt[n]{\sqrt[n]{a}} = \sqrt[nm]{a}$$

(iv)
$$\sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$$

(v)
$$\sqrt[n]{a^n} = a$$

Unit - 2

Real and Complex Numbers

(vi)

Exercise 2.3

- Q.1 Write each radical expression in exponential notation and each exponential expression in radical notation. Do not simplify. (A.B)
- (i) $\sqrt[3]{-64}$ = $(-64)^{\frac{1}{3}}$
- (ii) $2^{\frac{3}{5}}$ (A.B) $= \sqrt[5]{2^3}$
- (iii) $-7^{\frac{1}{3}}$ $-\sqrt[3]{7}$
- (iv) $y^{-\frac{2}{3}}$ = $\sqrt[3]{y^{-2}}$
- Q.2 Tell whether the following statements are true or false?
- (i) $5^{\frac{1}{5}} = \sqrt{5}$

False

(ii) $2^{\frac{2}{3}} = \sqrt[3]{4}$

True

(iii) $\sqrt{49} = \sqrt{7}$

False

(iv) $\sqrt[3]{x^{27}} = x^3$

False

- Q.3 Simplify the following radical expression.
- (i) ³√−125

Solution:

(A.B)

$$= \sqrt[3]{-125}$$

$$= \sqrt[3]{-5 \times -5 \times -5}$$

$$= \sqrt[3]{(-5)^3} : a^m \times a^n = a^{mn}$$

$$= -5 : \sqrt[m]{(a)^m} = a$$

$$\Rightarrow \sqrt[3]{-125} = -5$$

(ii) $\sqrt[4]{32}$ (iii)

 $\sqrt[4]{32}$ (LHR 2018)

(A.B)

Solutions:

∜32

$$= \sqrt[4]{2 \times 2 \times 2 \times 2 \times 2}$$

$$= \sqrt[4]{2^4 \times 2}$$

$$= \sqrt[4]{2^4 \times \sqrt[4]{2}} \quad \because \sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$$

$$= 2\sqrt[4]{2} \quad \because \sqrt[m]{(a)^m} = a$$

$$\Rightarrow \sqrt[4]{32} = 2\sqrt[4]{2}$$

(iii) $\sqrt[5]{\frac{3}{32}}$ (A.B)

(LHR 2017, 21, GRW 2019, SWL 2018, 19, RWP 2019)

Solution:

$$\sqrt[5]{\frac{3}{32}}$$

$$= \frac{\sqrt[5]{3}}{\sqrt[5]{32}} \quad \because \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

$$=\frac{\sqrt[5]{3}}{\sqrt[5]{2\times2\times2\times2\times2}}$$

$$=\frac{\sqrt[5]{3}}{\sqrt[5]{(2)^5}}$$

$$=\frac{\sqrt[5]{3}}{2} \qquad \because \sqrt[n]{a^n}=a$$

$$\Rightarrow \sqrt[5]{\frac{3}{32}} = \frac{\sqrt[5]{3}}{2}$$

(iv) $\sqrt[3]{-\frac{8}{27}}$ (A.B)

Solution:

$$\sqrt[3]{-\frac{8}{27}}$$

$$= \sqrt[3]{\left(-\frac{2}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{2}{3}\right)}$$

$$= \sqrt[3]{\left(-\frac{2}{3}\right)^3}$$

$$= -\frac{2}{3} \qquad \because \sqrt[n]{a^n} = a$$

$$\Rightarrow \sqrt[3]{-\frac{8}{27}} = -\frac{2}{3}$$

