

Mathematics-9

Exercise 2.5

Need of Complex Numbers (K.B)

Since square of a real number is nonnegative. So the solution of the equation $x^2 + 1 = 0$ or $x^2 = -1$ does not exist in R. To overcome this inadequacy of real numbers. we need a number whose square is -1. Thus the mathematicians were tempted to introduce a larger set of numbers called the set of complex numbers which contains R and every number whose square is They negative. invented number $\sqrt{-1}$, called the imaginary unit, and denoted it by the letter i (iota) having the property that $i^2 = -1$.

Invention of iota (Complex Number)

The swiss mathematician Leonard Euler (1707-1783) was the first to use the symbol *i* for the number $\sqrt{-1}$.

Note

(U.B+K.B)

Number like $\sqrt{-1}$, $\sqrt{-5}$ etc are called pure imaginary numbers

Definition of a Complex Number (U.B)

A number of the form a+bi where a and b are real number and $i = \sqrt{-1}$, is called a complex number and is represented by z.

i.e. z = a + ib

Set of Complex Number (U.B)

The set of all complex number is denoted by C.

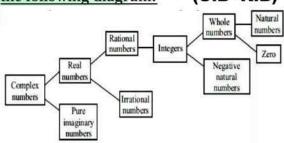
$$C = \left\{ z \mid z = a + bi, \text{ where } a, b \in R \text{ and } i = \sqrt{-1} \right\}$$

Note

(U.B+K.B)

- The numbers a and b, called the real (i) and imaginary parts of Z are denoted as a = Re(Z) and b = Im(Z)
- Every $a \in R$ may be identified with complex numbers of the form a+0itaking b = 0. Therefore, every real number is also a complex number. Thus $R \subset C$.
- (iii) Every complex number is not a real number.
- (iv) If a = 0, then a + bi reduces to a purely imaginary number bi. The set of purely imaginary numbers is also contained in C.
- (v) If a = b = 0, then z = 0 + i0 is called the complex number 0.

The set of complex numbers is shown in the following diagram: (U.B+K.B)



Conjugate of a Complex Number

(U.B+K.B)

If we change *i* to -i in z = a + bi we obtain another complex number a-bi called the complex conjugate of z and is denoted by z (read z bar)

Thus if z = -1 - i, then z = -1 + i

The number a+bi and a-bi are called conjugates of each other.

Unit - 2

Real and Complex Numbers

Note

(U.B+K.B)

- (i) z = z
- (ii) The conjugate of a real number z = a + 0i coincides with the number itself since $\overline{z} = \overline{a + 0i} = a 0i = a$.

The Equality of Complex Number

(U.B)

For all $a,b,c,d \in R$, a+bi=c+di If and only if a=c and b=d e.g., $2x+y^2i=4+9i$ if and only if 2x=4 and $y^2=9$, *i.e*, x=2 and $y=\pm 3$

Properties of Complex Number

(U.B)

Properties of real number R are also valid for the set of Complex numbers

- (i) $z_1 = z_1$ (Reflexive Law)
- (ii) If $z_1 = z_2$ then $z_2 = z_1$

(Symmetric Law)

(iii) If $z_1 = z_2$ and $z_2 = z_3$ then $z_1 = z_3$ (Transitive Law)

Exercise 2.5

Q.1 **Evaluate**

(A.B)

Solution:

$$i^{7}$$

$$= i^{6}.i$$

$$= (i^{2})^{3}.i$$

$$= (-1)^{3}.i \quad :: i^{2} = -1$$

$$= -1 \times i$$

$$= -i$$

(A.B) (ii) (LHR 2021, FSD 2017, 21, SWL 2018, SGD 2018, BWP 2017, 21)

Solution:

$$i^{50}$$

$$= (i^2)^{25}$$

$$= (-1)^{25} \quad \because i^2 = -1$$

$$= -1$$

 i^{12} (LHR 2017) (iii)

(A.B)

Solution:

$$i^{12}$$

$$= (i^2)^6$$

$$= (-1)^6 \qquad i^2 = -1$$

$$= 1$$

 $(-i)^8$ (iv) (A.B)

(RWP 2021, MTN 2021, SWL 2021, D.G.K 2017) **Solution:**

$$(-i)^{8}$$

$$= i^{8}$$

$$= (i^{2})^{4}$$

$$= (-1)^{4} \quad \because i^{2} = -1$$

$$= 1$$
(v) $(-i)^{5}$ (FSD 2017) (A.B)

Solution:

$$(-i)^{5}$$

$$= -i^{5}$$

$$= -i^{4} \cdot i$$

$$= -(i^{2})^{2} \cdot i$$

$$= -(-1)^{2} \cdot i \quad \therefore \quad i^{2} = -1$$

$$= -(1)(i)$$

$$= -i$$

(vi) (A.B)

Solution:

$$i^{27} = i^{26}.i$$

$$= (i^2)^{13}.i$$

$$= (-1)^{13}.i \quad : i^2 = -1$$

$$= -1.i$$

$$= -i$$

Q.2 Write the conjugate of the following numbers. (K.B)

Part #	Complex Number	Conjugate of Number
(i)	2+3i	2-3i
(ii)	3-5i	3+5i
(iii)	− <i>i</i>	i
(iv)	-3+4i	-3-4i
(v)	-4-i	-4+i
(vi)	i-3	-i-3

Write the real and imaginary part of the following numbers. (K.B) Q.3

Part #	Complex Number	Real Part	Imaginary Part
(i)	1+i	1	1
(ii)	-1+2i	-1	2

Unit - 2

Real and Complex Numbers

(iii)	-2 - 2i	-2	-2
(iv)	−3 <i>i</i>	0	-3
(v)	2+0i	2	0

Q.4 Find the value of x and y if x+iy+1=4-3i

(A.B)

(GRW 2017, FSD 2016, RWP 2017, 18, MTN 2019, D.G.K 2016, BWP 2021)

Solution:

Here

$$x+iy+1=4-3i$$

$$x + iy = 4 - 3i - 1$$

$$x + iy = 3 - 3i$$

By comparing real and imaginary part, we get

$$x = 3$$
 and $y = -3$

