$\mathbf{U}_{\mathrm{nit}}$ – 5 **Factorization**

Mathematics-9

Unit 5 - Exercise 5.3

Download All Subjects Notes from website www.lasthopestudy.com

(A.B)

REMAINDER THEORME AND FACTOR THEOREM

Remainder Theorem

(K.B+U.B)

(LHR 2015, BWP 2017)

If a polynomial p(x) is divided by a linear divisor (x-a) until a constant remainder is obtained, then this remainder is equal to p(a).

i.e.
$$R = P(a)$$

Proof:

Let q(x) be the quotient obtained after dividing p(x) by (x-a). As the divisor (x-a) is linear, so the remainder must be a constant say R.

By division Algorithm we may write p(x)=(x-a)q(x)+R

This is an identity in x and so is true for all real numbers x. In particular it is true for x = a. Therefore,

$$p(a) = (a-a)q(a) + R = 0 + R$$

i.e.,
$$p(a) = R$$
.

Hence Proved

Note (K.B)

If the divisor is (ax-b), we have

$$p(x)=(ax-b)q(x)+R$$

Substituting ax-b=0 or $x=\frac{b}{a}$, we obtain

$$p\left(\frac{b}{a}\right) = 0.$$
 $q\left(\frac{b}{a}\right) + R = 0 + R = R$

Thus if the divisor is linear, the above theorem provides an efficient way of finding the remainder without being involved in the process of long division.

Example # 1

Find the remainder when $9x^2 - 6x + 2$ is divided by

(i)
$$(x-3)$$
 (ii) $x+3$ (iii) $3x+1$

(iv) x

Solution:

Let
$$p(x) = 9x^2 - 6x + 2$$

(i) Put
$$x-3=0$$
 or $x=3$ in $p(x)$
 $p(3) = 9(3)^2 - 6(3) + 2 = 65$
 $\therefore R = 65$

(ii) Put
$$x+3=0$$
 or $x=-3$ in $p(x)$
 $p(-3)=9(-3)^2-6(-3)+2=101$
 $\therefore R=101$

(iii) Put
$$3x+1=0$$
 or $x = -\frac{1}{3}$ in $p(x)$

$$P\left(-\frac{1}{3}\right) = 9\left(-\frac{1}{3}\right)^2 - 6\left(-\frac{1}{3}\right) + 2 = 5$$

$$\therefore R = 5$$

(iv) Put
$$x = 0$$
 in $p(x)$
 $P(0) = 9(0)^2 - 6(0) + 2 = 2$
 $\therefore R = 2$

Example # 2

Find the value of k if the expression $x^3 + kx^2 + 3x - 4$ leaves a remainder of -2when divided by x+2.

Solution:

$$p(x) = x^3 + kx^2 + 3x - 4$$

Put $x + 2 = 0$ or $x = -2$ in $p(x)$
 $p(-2) = (-2)^3 + k(-2)^2 + 3(-2) - 4$.
 $= -8 + 4k - 6 - 4$

(A.B)

Unit - 5 Factorization

$$=-18+4k$$

By the given condition, we have

$$P(-2) = -2$$

$$\Rightarrow 4k-18=-2$$

$$4k = -2 + 18$$

$$4k = 16$$

$$\Rightarrow k=4$$

Zero of the Polynomial (K.B)

If a specific number x = a is substituted for the variable x in a polynomial p(x) so that value P(a) is a zero then x = a is called a zero of the polynomial P(x).

Factor Theorem (U.B)

If a polynomial P(x) is divided by a binomial (x-a) such that remainder is zero, then (x-a) is called factor of P(x).

Or

The polynomial (x-a) is a factor of the polynomial P(x) if and only if P(a) = 0.

Proof:

Let q(x) be the quotient and R the remainder when a polynomial P(x) is divided by (x-a) then by division Algorithm,

$$P(x)=(x-a)q(x)+R$$

By the Remainder Theorem, R = P(a).

Hence
$$P(x) = (x-a)q(x)+P(a)$$

- (i) Now if P(a)=0 then P(x) then P(x)=(x-a)q(x) i.e., (x-a) is a factor of P(x)
- (ii) Conversely, if (x-a) is a factor of P(x), then the remainder upon dividing P(x) by (x-a) must be zero i.e. P(a) = 0 This complete the proof.

Example # 1

(A.B)

Determine if (x-2) is a factor of x^3-4x^2+3x+2 .

Solution:

$$P(x) = x^3 - 4x^2 + 3x + 2$$

Then the remainder for (x-2) is

$$P(2)=(2)^3-4(2)^2+3(2)+2$$

$$=8-16+6+2=0$$

Since remainder is 0, (x-2) is a factor of the polynomial P(x).

Example # 2

Find a polynomial p(x) of degree 3 that has 2, -1 and 3 as zeros (i.e. roots).

Solution:

Since x = 2,-1,3 are roots of p(x), so by factor theorem (x-2),(x+1) and (x-3) are the factors of p(x).

Thus,

$$p(x) = a(x-2)(x+1)(x-3)$$
 where $a \in R$

$$p(x) = a(x-2)(x^2-3x+x-3)$$

$$p(x) = a(x-2)(x^2-2x-3)$$

$$p(x) = a(x^3 - 2x^2 - 3x - 2x^2 + 4x + 6)$$

$$p(x) = a(x^3 - 4x^2 + x + 6)$$

Is the required cubic polynomial.

Exercise 5.3

- Q.1 Use the remainder theorem to find the remainder when
- (i) $3x^3-10x^2+13x-6$ is divided by (x-2).

Solution:

$$P(x) = 3x^3 - 10x^2 + 13x - 6$$

Since P(x) is divided by (x-2).

$$\therefore P(2) = R$$

$$P(2) = 3(2)^{3} - 10(2)^{2} + 13(2) - 6$$
$$= 3(2)^{3} - 10(2)^{2} + 13(2) - 6$$
$$= 24 - 40 + 26 - 6$$

R = 4

Hence 4 is the remainder

(ii) $4x^3 - 4x + 3$ is divided by (2x-1)

 U_{nit} – 5

Solution:

$$P(x) = 4x^3 - 4x + 3$$

Since P(x) is divided by (2x-1)

$$\therefore R = P\left(\frac{1}{2}\right) \qquad \because 2x - 1 = 0 \Rightarrow x = \frac{1}{2}$$

$$P\left(\frac{1}{2}\right) = 4\left[\frac{1}{2}\right]^3 - \cancel{A}^2 \times \frac{1}{\cancel{2}} + 3$$

$$= \cancel{A} \times \frac{1}{\cancel{8}^2} - 2 + 3$$

$$= \frac{1}{2} - 2 + 3$$

$$= \frac{1 - 4 + 6}{2} = \frac{3}{2}$$

$$R = \frac{3}{2}$$

Hence $\frac{3}{2}$ is the remainder

(iii) $6x^4 + 2x^3 - x + 2$ is divided by (x+2) from x+2=0

Solution: Given that

$$P(x) = 6x^4 + 2x^3 - x + 2$$

Since P(x) is divided by (x+2)

$$\therefore R = P(-2)$$

$$P(-2) = 6(-2)^{4} + 2(-2)^{3} - (-2) + 2$$
$$= 96 - 16 + 2 + 2$$
$$R = 84$$

Hence 84 is the remainder.

(iv) $(2x-1)^3 + 6(3+4x)^2 - 10$ is divided by 2x+1.

Solution: Given that

$$P(x) = (2x-1)^3 + 6(3+4x)^2 - 10$$

Since P(x) is divided by 2x+1

$$\therefore R = P\left(-\frac{1}{2}\right)$$

$$P\left(-\frac{1}{2}\right) = \left[2\left(-\frac{1}{2}\right) - 1\right]^{3} + 6\left[3 + 4^{2}\left(-\frac{1}{2}\right)\right]^{2} - 10$$

$$= \left[-1 - 1\right]^{3} + 6\left[3 - 2\right]^{2} - 10$$

$$= \left[-2\right]^{3} + 6 - 10 = -8 + 6 - 10$$

$$R = -12$$

Hence -12 is the remainder.

(v)
$$x^3 - 3x^2 + 4x - 14$$
 is divided by $(x+2)$ from $x+2=0, x=-2$

Solution: Given that

$$P(x) = x^3 - 3x^2 + 4x - 14$$

Since P(x) is divided by (x+2)

$$\therefore R = P(-2)$$

$$P(-2) = (-2)^3 - 3(-2)^2 + 4(-2) - 14$$

= -8 - 12 - 8 - 14

$$R = -42$$

Hence -42 is the remainder

Q.2

(i) If (x+2) is a factor of $3x^2 - 4kx - 4k^2$ then find the values of k x+2=0 x=-2

Solution: Given that (A.B)

$$P(x) = 3x^2 - 4kx - 4k^2$$

$$P(-2) = 3(-2)^2 - 4k(-2) - 4k^2$$

$$P(-2) = 12 + 8k - 4k^2$$

If (x+2) is the factor then remainder is equal to zero

$$P(-2)=0$$

$$12 + 8k - 4k^2 = 0$$

$$-4(-3-2k+k^2)=0$$

$$k^2 - 2k - 3 = 0$$
 : $-4 \neq 0$

$$k^2 - 3k + k - 3 = 0$$

$$k(k-3) + 1(k-3) = 0$$

$$(k-3)(k+1) = 0$$

Either

$$k-3=0$$
 or $k+1=0$
 $k=3$ $k=-1$

(ii) If (x-1) is a factor of $x^3 - kx^2 + 11x - 6$ the find the value of k from x-1=0 x=1

Solution: Given that

$$P(x) = x^3 - kx^2 + 11x - 6$$

$$P(1) = (1)^3 - k(1)^2 + 11(1) - 6$$

$$P(1) = 1 - k + 11 - 6$$

$$P(1) = 6 - k$$

Unit - 5 Factorization

If (x-1) is the factor then remainder is equal to zero

$$P(1) = 0$$

$$6 - k = 0$$

$$k = 6$$

Result:

$$k = 6$$

- Q.3 Without long division determine whether
- (i) (x-2) and (x-3) are factor of $P(x) = x^3 12x^2 + 44x 48$

Solution:

Given that

$$P(x) = x^3 - 12x^2 + 44x - 48$$

If (x-2) is the factor then remainder is equal to zero

$$P(2)=(2)^3-12(2)^2+44(2)-48=8-48+88-48=0$$

Hence x-2 is a factor of P(x)

For
$$x-3$$

$$R = P(3)$$

$$= (3)^3 - 12(3)^2 + 44(3) - 48$$

$$=(3)^3-12(3)^2+44(3)-48$$

$$=27-108+132-48$$

$$=159-156$$

$$R=3\neq 0$$

P(3) is not equal to zero then x - 3 is not factor of $P(x) = x3 - 12x^2 + 44x - 48$

(ii)
$$(x-2),(x+3)$$
 and $(x-4)$ are
factor of $q(x) = x^3 + 2x^2 - 5x - 6$
from $x-2=0, x=2$

Solution:

Given that

$$q(x) = x^3 + 2x^2 - 5x - 6$$

Put
$$x - 2 = 0 \implies x = 2$$

$$R = q(2)$$

$$=(2)^3+2(2)^2-5(2)-6$$

$$R = 8 + 8 - 10 - 6$$

$$R = 16 - 16$$

$$R = 0$$

Hence
$$x-2$$
 is factor of

$$q(x) = x^3 + 2x^2 - 5x - 6$$

Put
$$x + 3 = 0 \implies x = -3$$

$$R = q(-3)$$

$$= (-3)^3 + 2(-3)^2 - 5(-3) - 6$$

$$=-27+18+15-6$$

$$R = 0$$

Hence x - 2 is factor of

$$q(x) = x^3 + 2x^2 - 5x - 6$$

Put
$$x - 4 = 0 \implies x = 4$$

$$R = q(4)$$

$$= (4)^3 + 2(4)^2 - 5(4) - 6$$

$$=64+32-20-6$$

$$R=70 \neq 0$$

Hence x - 4 is not a factor of

$$q(x) = x^3 + 2x^2 - 5x - 6$$

Q.4 For what value of 'm' is the polynomial $P(x) = 4x^3-7x^2+6x-3m$ exactly divisible by x+2?

Solution:

$$P(x) = 4x^3 - 7x^2 + 6x - 3m$$

From
$$x+2=0$$
, $x=-2$

$$P(-2)=4(-2)^3-7(-2)^2+6(-2)-3m$$

If (x+2) is the factor then remainder is equal to zero

$$P(-2) = 0$$

$$-72-3m=0$$

$$-72 = 3m$$

$$m = -\frac{72}{3}$$

$$m = -24$$

-

m = -24 **Q.5 Determ**

Result:

Q.5 Determine the value of k if $P(x) = kx^3 + 4x^2 + 3x - 4$ and $g(x) = x^3 + 4x + k$ leaves the same

$$q(x) = x^3 - 4x + k$$
 leaves the same

remainder when divided by (x-3).

Solution:

$$q(x) = x^3 - 4x + k$$

Unit - 5

Put
$$x$$
-3=0 or x =3
 $R_1 = q(3)$
 $= (3)^3 - 4(3) + k$
 $= 27 - 12 + k$
 $= 15 + k$ (i)
 $R_2 = P(3)$
 $= k(3)^3 + 4(3)^2 + 3(3) - 4$
 $= 27k + 36 + 9 - 4$
 $R_2 = 27k + 41$ (ii)
Since it leaves the same remainder.
Hence $R_1 = R_2$
 $15 + k = 27k + 41$
 $15 - 41 = 27k - k$
 $-26 = 26k$

k=-1 Q.6 The remainder after dividing the polynomial $P(x)=x^3+ax^2+7$ by (x+1) is 2b calculate the value of a and b if this expression leaves a remainder of (b+5) on being

dividing by (x-2)

Solution:

 $k = \frac{-26}{26}$

Let

P(x) =
$$x^3 + ax^2 + 7$$

Since $P(x)$ is divided by $(x+1)$
Put $x+1=0$ $x=-1$
R=P(-1)
= $(-1)^3 + a(-1)^2 + 7$
= $-1+a+7$
 $R = a+6$
According to first condition remainder is 2b
 $2b = a+6$...(i)
Since $P(x)$ is divided by $(x-2)$

Put x-2=0 or x=2

```
P(2)=(2)^3+a(2)^2+7
         =8+4a+7
       R=15+4a
       According
                  to second condition
       remainder is (b+5)
       15+4a=b+5
       4a-b=5-15
       4a-b=-10
                   ..... (ii)
       Solving equations (i) and (ii)
       From equation (ii) b=10+4a
       Putting the value of b in equation (i)
       a+6=2(10+4a)
       a=20+8a-6
       -8a + a = 14
       -7a = 14
       Putting the value of a in equation (ii)
       4a - b = -10
       4(-2)-b=-10
       -8-b=-10
       -8+10=b
       2 = b
       b = 2
       Result:
       a = -2, b = 2
       The polynomial x^3 + lx^2 + mx + 24
Q.7
       has a factor (x+4) and it leaves a
       remainder of 36 when divided by
       (x-2)
       Find the values of l and m.
```

Solution:

(K.B+U.B)

 $P(x) = x^3 + lx^2 + mx + 24$

From x+4=0 or x=-4

Unit - 5 **Factorization**

$$P(-4) = (-4)^3 + l(-4)^2 + m(-4) + 24$$

$$P(-4) = -64 + 16l - 4m + 24$$

$$P(-4) = 16l - 4m - 40$$

According to condition (x+4) is the factor then

$$16l - 4m - 40 = 0$$

$$4[4l-m-10]=0$$

$$4l - m - 10 = 0$$

from
$$x-2=0$$
 or $x=2$

Now
$$P(2) = (2)^3 + l(2)^2 + m(2) + 24$$

$$P(2) = 8 + 4l + 2m + 24$$

$$P(2) = 4l + 2m + 32$$

According the condition

$$4l + 2m + 32 = 36$$

$$4l + 2m = 36 - 32$$

$$4l + 2m = 4$$

$$4l + 2m - 4 = 0$$

(ii) Subtracting (i) from (ii)

$$41 + 2m - 4 = 0$$

$$\pm A = m \mp 10 = 0$$

$$3m + 6 = 0$$

$$3m = -6$$

$$m = \frac{-\cancel{6} \, \cancel{2}}{\cancel{3}}$$

Putting the value of m is equation (i) 4l - (-2) - 10 = 0

$$4l + 2 - 10 = 0$$

$$4l + 2 - 10 =$$

$$4l - 8 = 0$$

$$4l = 8$$

$$l = \frac{28}{\cancel{4}}$$

The expression $lx^3 + mx^2 - 4$ leaves Q.8 remainder of -3 and 12 when divided by (x-1) and (x+2)

> respectively. Calculate the value of l and m.

Solution:

$$P(x) = lx^3 + mx^2 - 4$$

from
$$x$$
-1=0 or x =1

$$P(1) = l(1)^3 + m(1)^2 - 4$$

$$P(1) = l + m - 4$$

According to conditions l+m-4=-3

$$1 + m = 4 - 3$$

$$l = 1 - m$$
(i)

From
$$x+2=0$$
 or $x=-2$

$$P(-2) = l(-2)^3 + m(-2)^2 - 4$$

$$P(-2) = -8l + 4m - 4$$

According to condition

$$-8l+4m-4=12$$

Putting the value of *l* in the equation

$$-8[1-m]+4m=16$$

$$-8 + 8m + 4m = 16$$

$$12m = 16 + 8$$

$$12m = 24$$

$$m = \frac{24^2}{12}$$

$$m=2$$

Putting the value of m is equation (i)

$$l = 1 - 2$$

$$l = -1$$

Result:

$$m=2, l=-1$$

The expression $ax^3 - 9x^2 + bx + 3a$ Q.9 is exactly divisible by $x^2 - 5x + 6$. Find the value of a and b.

Solution:

Given that

$$P(x) = ax^3 - 9x^2 + bx + 3a$$

$$x^{2}-5x+6 = x^{2}-2x-3x+6$$
$$= x[x-2]-3[x-2]$$

$$= [x-2][x-3]$$

Since $x^2 - 5x + 6$ divides P(x)

completely then

$$(x-2)$$
 and $(x-3)$ are factors of $P(x)$.

Put
$$x-2=0 \Rightarrow x=2$$

Unit - 5 Factorization

$$P(2) = a(2)^3 - 9(2)^2 + b(2) + 3a$$

$$P(2) = 8a - 36 + 2b + 3a$$

$$P(2) = 11a + 2b - 36$$

According to condition (x-2) is the

factor so

$$11a + 2b - 36 = 0 \rightarrow (i)$$

From
$$x - 3 = 0$$
 or $x = 3$

$$P(3) = a(3)^3 - 9(3)^2 + b(3) + 3a$$

$$P(3) = 27a - 81 + 3b + 3a$$

$$P(3) = 30a + 3b - 81$$

According to condition (x-3) is the

factor so

$$30a+3b-81=0$$
 \rightarrow (ii)

$$3(10a+b-27)=0$$

$$10a + b - 27 = \frac{0}{3}$$

$$b = 27 - 10a$$

$$\rightarrow$$
 (iii)

Putting the value of b in equation (i)

$$11a + 2[27 - 10a) - 36 = 0$$

$$11a + 54 - 20a - 36 = 0$$

$$-9a + 18 = 0$$

$$18 = 9a$$

$$a = \frac{\cancel{182}}{\cancel{9}}$$

$$a = 2$$

Putting the value of a in equation (iii)

$$b = 27 - 10(+2)$$

$$b = 27 - 20$$

$$b=7$$

Result:

$$a = 2, b = 7$$