LA	ST Ma	themati Jnit 3 – 1	cs-10 3.2	
STI	₩.			
	Download All Subjects Notes from	n website 🤅	www.lasthopestudy.com	
	Evoroico 3 2		$y \propto x$	
01		8	v = 7 when $x = 3$	
Q.1 Givei	n Data:		Required	
Given	y varies directly as x	(i)	y in term of x	
	y = 8 when $x = 2$	(ii)	(a) $x = ?$ when $y = 35$ (A.B))
	y = 0 when $x = 2$		(b) $y = ?$ when $x = 18$ (A.B	;)
Reau	ired	Solu	tion:	
(i)	y in terms of x		Here, $x \propto y$ or $y \propto x$	
(ii)	y = ? when $x = 5$		$y = kx \rightarrow (i)$	
(iii)	x = ? when $y = 28$	1	For value of k	
Solut	ion.		Put $y = 7, x = 3$	
Solut	Here $v \propto x$	1 De	7 = k(3)	
	$y = kx \rightarrow (i)$, 7	
	y = h x + y(1)		$\Rightarrow k = \frac{1}{3}$	
	For value of k	(i)	y in terms of x (A.B)	
	Fut y = 8, x = 2		y = kx	
	(8) = k(2)		$\Rightarrow y = \frac{7}{7}r$	
	$\Rightarrow k = 4$	Mr.	$\rightarrow y - \frac{3}{3}x$	
(i)	y in terms of <i>x</i> : (A.B + K.B)	(ii)	For values of x: (A.B)	
	Put $k = 4$ in equation (i)		Put $y = 35$ in equation (i), we get	
	y = 4x		$35 = \frac{7}{2}x$	
(ii)	For value of y: (A.B + K.B)	1	3	
	Put $x = 5$ and $k = 4$, we get		$\frac{35 \times 5}{7} = x$	
	y = (4)(5)		\rightarrow r-15	
	v = 20		For value of y	
(;;;;)	For value of r : (A B + K B)		Put $x = 18$ in equation (i), we get;	
(111)	Put k and v in the equation (i) we get		$v = \frac{7}{2}(18)$	
	28 = 4r		3	
	$\Rightarrow x = 7$		y = 7(6)	
	Result		y – 42 Result	
(i)	y = 4x	(•)	7	
(ii)	y = 20 when $x = 5$	(i)	$y = \frac{1}{3}x$	
(iii)	x = 7 when $y = 28$	(ii)	(a) $x = 15$	
Q.2			(b) $y = 42$	
	Given Data:			

Unit-3	Variations
0.3 (A.B + U.B)	$R \propto T^2$
Given Data:	$R = kT^2 \rightarrow (i)$
$R \propto T$	For value of k
R = 5 when $T = 8$	Put $R = 8, T = 3$ in equation (i), we get
Required	$8 - k(2)^2$
Equation connecting R and T .	$\delta = \kappa \left(S \right)$
R = ? when $T = 64$	8 = k(9)
I = ? when $R = 20$	8 ,
Solution: Here $P \simeq T$	$\frac{-}{9} = k$
$\frac{R}{R} = \frac{kT}{R}$	8
For value of k	$\Rightarrow k = -\frac{1}{9}$
Put $R=5$ and $T=8$	- 8-2
5 = 8(k)	$\therefore R = \frac{1}{9}T^2 \rightarrow (ii)$
5	For value of R
$\frac{-}{8} = \kappa$	Put $T = 6$ in equation (ii), we get
The equation connecting R and T is:	
	$R = -\frac{1}{9}(6)^2$
$R = -\frac{1}{8} \rightarrow (1)$	8
For value of R	$R = \frac{1}{9}(36)$
By putting $T = 64$ in equation (i), we get;	$R - 8(\Lambda)$
$P = \frac{5}{(64)}$	R = O(4)
$K = \frac{1}{8}(04)$	R = 32
R = 5(8)	P = 32 when T = 6
R = 40	A = 52 when I = 0
For value of T	Q.5 (A.B)
By putting $R = 20$ in equation (i), we get:	Given Data. $V = D^3$
	$V \propto R$ V = 5 when $R = 3$
$20 = -\frac{1}{8}T$	V = 5 when $K = 5$
8 –	Required data: R = 2 when $V = 625$
$20 \times \frac{1}{5} = T$	Solution: $K = 1$ when $V = 02.5$
$\Rightarrow T = 32$	Here $V \propto R^3$
Result	$V = kR^3 \rightarrow (i)$
5_{T}	$V = KK \rightarrow (1)$
$K = -\frac{1}{8}$	Put $V = 5$ and $R = 3$ in equation (i) we get
R = 40 when $T = 64$	$5 - k(2)^3$
T = 32 when $R = 20$	5 = k(5)
0.4 (A.B + U.B)	S = 27k
Given Data:	$k = \frac{3}{27}$
$R \propto T^2$	21
R = 8 when $T = 3$	$V = \frac{3}{27}R^3$
Required	For value of R
R = ? when $T = 6$	5 -5 -3
Solution:	$625 = \frac{1}{27}R^{3}$

MATHEMATICS -10 Unit-3

Un	it-3	Variation
	$\frac{625 \times 27}{R^3} = R^3$	Here $y \propto \frac{1}{2}$
	5	
	$125 \times 27 = R^3$	$v - k \xrightarrow{1} \rightarrow (i)$
T -1	$3375 = R^3$	$y = \frac{x}{x}$ (1)
1 al	king cube root on both sides	For value of k
	$\Rightarrow \sqrt[3]{R^3} = \sqrt[3]{3375}$	Put $y = 7$ and $x = 2$ in equation (i), we get
	R = 15	$7 = \frac{k}{2}$
	Result	2
	R = 15 when $V = 625$	$\Rightarrow k = 7(2)$
Q.6	(A.B)	k = 14
	Given Data:	$\frac{14}{100}$
	$w \propto u^3$	$\therefore y - \frac{1}{x} \rightarrow (1)$
	w = 81 when $u = 3$	For value of y
	Required data:	Put $x = 126$ in equation (ii), we get
	w = ? when $u = 5$	$v = \frac{14}{14}$
Solut	ion	y - 126
	Here, $w \propto u^3$	$v - \frac{1}{2}$
	$w = ku^3 \rightarrow (i)$	y - 9
	For value of k	Result:
Р	Put $w = 81, u = 3$ in equation (i), we get	$y = \frac{1}{2}$ when $x = 126$
	$(81) = k \left(3\right)^3$	$9^{\text{(AB+IIF}}$
	81 = k(27)	Given Data:
	81	
	$\frac{31}{27} = R$	$y \propto \frac{1}{r}$
	$\frac{2}{k-3}$	y = 4 when $x = 3$
	$\kappa = 5$ $\therefore w = 2w^3 \rightarrow (ii)$	Required data:
	$W = 5u \Rightarrow (\Pi)$	x = ? when $y = 24$
	Put $u = 5$ in equation (ii), we get	Solution:
	$w = 3(5)^{\circ}$	Here v e ¹
	w = 3(125)	$x = \frac{1}{x}$
	w = 375	k (i)
	Result	$y = -\frac{1}{x} \rightarrow (1)$
	w = 375 when $u = 5$	For value of k
0.7	(A.B)	Put $y = 4$ and $x = 3$ in equation (i), we get
	Given Data:	4 - k
	1	$4 - \frac{1}{3}$
	$y \propto -\frac{1}{x}$	$\Rightarrow k = 12$
	v = 7 when $x = 2$	$\therefore y = \frac{12}{2} \rightarrow (ii)$
	Required data:	$x = \frac{1}{x}$
	y = ? when $x = 126$	For value of x
Solut	ion:	Put $y = 24$ in equation (ii), we get
Solut		

MATHEMATICS -10 Unit-3

Unit-3	Variations
$24 = \frac{12}{x}$ $\Rightarrow x = \frac{12}{24}$ $x = \frac{1}{2}$ Result:	$w = \frac{4}{5}$ Result: $w = \frac{4}{5} \text{ when } z = \frac{175}{4}$ Q.10 (A.B + U.B) Given Data:
$x = \frac{1}{2} \text{ when } y = 24$ Q.9 (A.B + U.B) Given Data: $w \propto \frac{1}{z}$	$A \propto \frac{1}{r^2}$ $A = 2 \text{ when } r = 3$ Required data: $r = ? \text{ when } A = 72$ Solution:
$w=5 \text{ when } z=7$ Required data: $w=? \text{ when } z=\frac{175}{4}$ Solution: Here, w ec ⁻¹	$A \propto \frac{1}{r^2}$ $A = \frac{k}{r^2}$ For value of k k
Here, $w \propto \frac{1}{z}$ $w = \frac{k}{z} \rightarrow (i)$ For value of k Put $w = 5$ and $z = 7$ in equation (i), we get	$A = \frac{\pi}{r^2}$ Put $A = 2$ and $r = 3$ $2 = \frac{k}{(3)^2}$ 18 = k k = 18
$5 = \frac{\pi}{7}$ $\Rightarrow k = 35$ $\therefore w = \frac{35}{z} \rightarrow (ii)$ For value of w	$A = \frac{18}{k}$ For value of r $A = \frac{k}{r^2}$ Put $A = 72$ and $k = 18$
Put $z = \frac{175}{4}$ in equation (ii), we get $w = \frac{35}{\left(\frac{175}{4}\right)}$	$72 = \frac{18}{r^2}$ $r^2 = \frac{18}{72}$ $r^2 = \frac{1}{4}$
$w = 35 \div \frac{175}{4}$ $w = 35 \times \frac{4}{175}$	Taking square root $r = \pm \frac{1}{2}$ Result: $r = \pm \frac{1}{2}$ when $A = 72$
MATHEMATI	<u> </u>

Unit-3	Variations
0.11 (A.B + U.B)	
Given Data:	$V = \frac{1}{r^3} \rightarrow (1)$
$a \propto \frac{1}{2}$	For value of k
b^2	Put $V = 5$ and $r = 3$ in equation (1), we get
a = 3 when $b = 4$	$5 = \frac{\kappa}{2^3}$
Required data: $a = 2$ when $b = 8$	5(27) = k
Solution:	k = 135
$a = \frac{1}{h^2}$	$\therefore V = \frac{135}{r^3} \rightarrow (ii)$
k a	For value of V
$a = \frac{b^2}{b^2} \rightarrow (1)$	Put $r = 6$ in equation (ii), we get
For value of k	$V = \frac{135}{2}$
Put the value $a = 3$ and $b = 4$ in eq (i), we get	6 ³
$3 = \frac{k}{\langle x \rangle^2}$	$V = \frac{135}{216}$
$(4)^{2}$	216
3(16) = k	$V = \frac{5}{8}$
$\Rightarrow k = 48$	For value of r
$\therefore a = \frac{48}{h^2} \rightarrow (ii)$	Put $V = 320$ in equation (ii), we get
For value of <i>a</i>	$320 - \frac{135}{2}$
Put $b = 8$ in equation (ii), we get	r^3
$a = \frac{48}{3}$	$r^3 = \frac{27}{2}$
8 ²	64
$a = \frac{48}{44}$	Taking cube root on both sides, we get
64	$\sqrt[3]{r^3} = \sqrt[3]{\frac{27}{r^4}}$
$a = \frac{3}{4}$	√ 64
4 Result:	$r = \frac{3}{4}$
$a = \frac{3}{2}$ when $b = 8$	Result
$\frac{4}{4}$ when $b = 0$	$V = \frac{5}{2}$ when $r = 6$
Q.12 (A.B + U.B)	$V = \frac{1}{8}$ when $V = 0$
Given data:	$r = \frac{3}{2}$ when $V = 320$
$V \propto rac{1}{r^3}$	4
V = 5 when $r = 3$	Q.13 (SGD 2014) $(A.B + U.B)$
Required data:	Given
V = ? when $r = 6$	$m \propto \frac{1}{n^3}$ and m = 2 when n = 4
r = ? when $V = 320$	Required data:
301uu011. 1	(i) $m = ?$ When $n = 6$
$V \propto \frac{1}{r^3}$	(ii) $n = ?$ when $m = 432$
,	Solution

Solution

Unit-3	Variation

$m \propto \frac{1}{n^3}$	$n = \frac{2}{3}$
$m = k \times \frac{1}{n^3}$	Result: $m = \frac{16}{10}$ when $n = 6$
$m=\frac{k}{n^3}\to(i)$	$\frac{27}{n-\frac{2}{2}}$ when $m=432$
For value of k	$\frac{n-3}{3}$ when $m-432$
Put $m = 2$, $n = 4$ in equation (i)	
$2 = \frac{k}{\left(4\right)^3}$	
$2 \times 64 = k$	
$k = 2 \times 64$	
<i>k</i> = 128	
128	
$m = \frac{1}{n^3}$	
For value of <i>m</i>	16
Put $k = 128, n = 6$	
$\mathbf{m} = \frac{128}{\left(6\right)^3} \because n = 6$	ST
$m = \frac{128}{216}$	PE
$m = \frac{16}{27}$	DY
ror value of <i>n</i>	
$m = \frac{\kappa}{m^3}$	
n 128	
$432 = \frac{120}{n^3}$: $m = 432$	
$432(n^3) = 128$	
$n^3 = \frac{128}{432}$	
$n^3 = \frac{64}{216}$	
$n^3 = \frac{32}{108}$	
$n^3 = \frac{16}{54}$	
$n^3 = \frac{8}{27}$	
Taking cube root on both sides	