Unit-3	Variations	
Mathematics-10 Unit 3 – 3.7 Download All Subjects Notes from website Www.lasthopestudy.com		
Exercise 3.7 Q.1 The surface area <i>A</i> of a cube varies directly as the square of the length <i>l</i> of an edge and <i>A</i> = 27 square units when =3 units. Find A when <i>l</i> = 4 units (ii) <i>l</i> when <i>A</i> = 12sq. units. (A.B + K.B) Given $A \propto l^2$ A = 27 square unit when <i>l</i> = 3 units To find A = ? when <i>l</i> = 4 units <i>l</i> = ? when A = 12 square unit Solution: Here $A \propto l^2$ $A = kl^2 \longrightarrow (i)$ Put $A = 27$, <i>l</i> = 3 $27 = k(3)^2$ 27 = 9k 3 = k k = 3 For value of <i>A</i> Put $k = 3$, <i>l</i> = 4 in equation (i) $A = 3(4)^2$ A = 48 For value of <i>l</i> Put $k = 3$, $A = 12$ square unit in equation (i) $12 = 3l^2$ $4 = l^2$ Or $l^2 = 4$ Taking square root on b/s $l^2 = \pm 2$ $\Rightarrow l = 2$ (Length is always positive) Result: A = 48 square unit when $l = 4$ units l = 2 unit when $A = 12$ square units	Q.2 The surface area S of the sphere varies directly as the square of radius r, and $S = 16\pi$ when $r = 2$. Find r when $S = 36\pi$. (A.B K.B) Given $S \propto r^2$ $S = 16\pi$ when $r = 2$ To Find $r = ?$ when $s = 36\pi$ Solution: Here $S \propto r^2$ $S = kr^2 \longrightarrow (i)$ For value of k Put $S = 16\pi$, $r = 2$ in equation (i) $16\pi = k(2)^2$ $16\pi = 4k$ $4\pi = k$ Or $k = 4\pi$ $S = \pi r^2$ For value of r Put $k = 4\pi$, $S = 36\pi$ in equation (i) $36\pi = 4\pi r^2$ $9 = r^2$ Taking square root on both sides $r = \pm 3$ $\Rightarrow r = 3$ (Length is positive) Result: $r = 3$ when $S = 36\pi$ Q.3 In Hook's law the force F applied to stretch a spring varies directly as the amount of elongation S and F = 32lb when $S = 1.6$ in. Find (i) S when $F = 50lb$ (ii) F when $S = 0.8$ in (K.B + A.B) Given $F \propto S$ F = 32 lb when $S = 1.6$ m. To find S = ? when $F = 50$ lb	

Unit-3	Variations
Solution: Here $F \propto S$ $F = kS \rightarrow (i)$ For value of k Put F = 32 and S = 1.6 in equation (i) 32 = k(1.6) 20 = k Or $k = 20F = 20SFor value of SPut k = 20 and F = 5050 = 20S\frac{5}{2} = S$	$20 = \frac{k}{(12)^2}$ $20 \times 144 = k$ Or 2880 = k $I = \frac{2880}{d^2}$ For value of I Put k = 2880 and d = 8 in equation (i) $I = \frac{2880}{(8)^2}$ $I = \frac{2880}{(8)^2}$
Or $S = \frac{5}{2}$ For value of F Put k = 20 and S = 0.8 in equation (i) F = 20(0.8) F = 16 Result: $S = \frac{5}{2}$ in when F = 50 lb	$I = \frac{1}{64}$ $I = 45$ Result $I = 45$ Result $I = 45$ c and le power when d = 8ft. Q.5 The pressure <i>P</i> in a body of fluid varies directly as the depth <i>d</i> . If the pressure exerted on the bottom of a tank by a column of fluid 5ft. high is 2.25 lb/sq. in, how deep
Q.4 $F = 16$ lb when $S = 0.8$ in The intensity <i>I</i> of light from a given source varies inversely as the square of the distance <i>d</i> from it. If the intensity is 20 candlepower at a distance of 12ft. From the source, in <i>d</i> the intensity at a point 8ft.	Given $P \propto d$ P = 2.25 lb/sq when $d = 5$ ft To Find d = ? when $P = 9$ lb/sq
from the source. (K.B +A.B) Given $I \propto \frac{1}{d^2}$ I = 20 candle power when $d = 12$ ft To find I = ? when $d = 8$ ft Solution: Here $I \propto \frac{1}{d^2}$ $I = \frac{k}{d^2} \rightarrow (i)$ For value of k Put I = 20 and d = 12 in equation (i)	Solution: Here $P \propto d$ $P = kd \longrightarrow (i)$ For value of k Put P = 2.25 and d = 5 2.25 = k(5) Or k=0.45 P = 0.45d For value of d Put k = 0.45 and P = 9 9 = 0.45 d $\frac{9}{0.45} = d$ 20 = d Or $d = 20$ Result d = 20ft when P = 9 lb/sq.

Uni	it-3	Variations
Q.6	Labour costs c varies jointly as the number of workers n and the average number of days d, if the cost of 800 workers for 13 days is Rs. 286000, then find the labour cost of 600workers for 18 days (K.B +A.B) Given	c \propto d ⁴ and c $\propto \frac{1}{l^2}$ c = 63 tons when d = 6 inches and l = 30 feet To Find l = ? when d = 4 inches c = 28 tons Solution: Here
	$c \propto nd$ c = Rs. 286000 when $n = 800workers, d = 13 daysTo findc = ?$ when $n = 600$ workers, $d = 18$	$c \propto d^4$ and $c \propto \frac{1}{l^2}$ In joint variation: $c \propto \frac{d^4}{l^2}$
Soluti	days ion: Here	$\Rightarrow c = k \frac{d^4}{l^2}$
Put c :	$c \propto nd$ $c = knd \longrightarrow (i)$ For value of k $= 286000, n = 800 \text{ and } d = 13 \text{ in eq } (i)$ $286000 = k(800)(13)$ $\frac{286000}{800 \times 13} = k$ $\Rightarrow \frac{55}{2} = k$ $c = \frac{55}{2}nd$ For value of c	For value of k Put c = 63, d = 6 and l = 30 in equation (i) $63 = k \frac{(6)^4}{(30)^2}$ $63 = k \frac{1296}{900}$ $\frac{63 \times 900}{1296} = k$ $\frac{175}{4} = k$
Put k	$=\frac{55}{2}$, n = 600 and 18 in equation (i)	Or $k = \frac{175}{4}$
Q.7	$c = \frac{55}{2} \times 600 \times 18$ c = 297000 Result: c = Rs.29700 when n = 600 workers and $d = 18 \text{ days}$ The supporting load c of a pillar varies as the fourth power of its diameter d and inversely as the square of its length 1. A pillar of diameter 6 inch and of height 30 feet will support a load of 63 tons. How high a 4 inch pillar must be to support a load of 28 tons? (K.B +A.B)	$c = \frac{175d^4}{4e^2}$ For value of <i>l</i> Put k = $\frac{175}{4}$, d = 4, c = 28 in equation (i) $28 = \frac{175}{4} \frac{(4)^4}{l^2}$ $28 \times 4l^2 = 175 \times 256$ $l^2 = 400$ Taking positive square root on both sides $\Rightarrow l = 20$ Result l = 20 feet when d = 4 inches and $c = 28$ tons Q.8 The time T required for an elevator to lift a weight varies is inthe as the
	Given	to lift a weight varies jointly as the weight <i>w</i> and the lifting depth <i>d</i> varies inversely as the power <i>p</i> of

\mathbf{U}_{nit-3}

Variations

the motor. If 25 sec. are required for a 4-hp motor to lift 500 lb through	Result:
40 ft, what power is required to lift 800 lb, through 120 ft in 40 sec.? (K.B +A.B)	P = 12 np when w = 800 lb, a = 120 ft and T = 40 sec.
	0 0 The kinetic energy (KF) of a hody
Given 1	varias jointly as the mass "m" of
$T \propto wd and T \propto \frac{1}{P}$	the body and the sequence of its
T = 25 sec when $P = 4$ hp, $w = 500$ lb	the body and the square of its
P = ? when $c = 800$ lb, $d = 120$ ft and	velocity "v". If the kinetic energy is
T = 40 sec.	4320 ft/lb when the mass is 45 lb
Here	and the velocity is 24 ft/sec.
$T \propto wd$ and $T \propto \frac{1}{-1}$	Determine the kinetic energy of a
P In joint variation:	3000 lb automobile travelling 44
T or wd	ft/sec. (K.B +A.B)
P bund	Given
$T = \frac{kwu}{P} \longrightarrow (i)$	K.E \propto mv ²
For value of k	K.E = 4320 ft/lb when m = 45 lb and
Put $T = 23, P = 4, w = 500, a = 40$ in equation (i)	v = 24 ft/sec
$25 = k \frac{500 \times 40}{25}$	To find
40 25	K.E = ? when $m = 3000$ lb, $v = 44$
$\frac{25}{5000} = k$	ft/sec
$\frac{1}{1} = \mathbf{k}$	Solution:
200	Here
Or $k = \frac{1}{200}$	$K.E \propto mv^2$
$T = \frac{wd}{200P}$	$K.E = kmv^2 \longrightarrow (i)$
For value of P	For value of k
Put k = $\frac{1}{200}$, w = 800, d = 120	Put K.E = 4320 , m = 45 and v = 24
	$4320 = k(45)(24)^2$
and $T = 40$ in equation (i)	4320 - k
$40 = \frac{1}{200} \frac{800 \times 120}{R}$	45×576 ^{-K}
$40P = 4 \times 120$	$k = \frac{1}{6}$
P=12	

\mathbf{U}_{nit-3}

Variations

$$K.E = \frac{1}{6}mv^2$$

For value of *K*.*E* Put $k = \frac{1}{6}$, m = 3000, v = 44 in equation (i)

$$\text{K.E} = \frac{1}{6} \times 3000 \times (44)^2$$

K.E = 968000

Result:

K.E = 968000 ft/lb when m = 3000 lb and v = 44 ft/sec

