

NUMERICAL PROBLEMS

1.1 A normal conversation sound intensity of about 3.0 x 10-6 Wm-2. What is the decibel level for this intensity? What is the intensity of the sound for 100 dB? (*A.B*) (SGD-G2)-2015/(GRW-G2)-2016

Solution: $= 10 \log \frac{3 \times 10^{-6} \text{ yrm}^{-2}}{10^{-12} \text{ wrm}^{-2}} \text{ dB}$ (a) **Given Data** Now intensity for 100 dB Intensity of normal conversation = I = 3.0×10⁻⁶wm⁻² $L - L_o = 10 \log \left(\frac{3 \times 10^{-6}}{10^{-12}} \right)$ Intensity of faintest sound = $I_0 = 10^{-12} \text{wm}^-$ 2 $=10\log(3\times10^{-6+12})dB$ **To Find:** Intensity level = $L-L_o = ?$ $=10\log(3\times10^6)dB$ Formula: $=10 \times 6.47 dB$ $L - L_o = 10 \log \frac{I}{I} dB$ = 64.7 dB**Calculation:** By using formula, we have **(b)** $10 = \log \frac{1}{10^{-12}}$ **Given Data:** Intensity level L - $L_o = 100 \text{ dB}$ $10 = \log 10^{12} \times I$ Intensity of faintest sound = $I_0 = 10^{-10}$ Taking antilog on both sides 12 wm⁻² Antilog10=Antilog $\log(10^{12} \times I)$ To Find: $1 \times 10^{10} = 10^{12} I$ Intensity of given sound = I = ?Formula: $\frac{1 \times 10^{10}}{10^{12}} = I$ L - L_o = 10 log $\frac{I}{I}$ dB $I = 1 \times 10^{-2}$ **Calculation:** $I = 0.01 Wm^{-2}$ By using formula, we have **Result**: $100 \, dB = 10 \log \frac{I}{10^{-12} \, \mathrm{wm}^{-2}} \, dB$ Hence, sound intensity level of normal conversation is 64.8 dB and intensity of $\Rightarrow \quad \frac{100}{10} = \log \frac{I}{10^{-12} \text{ wm}^{-2}}$ sound for 100 dB is 0.01 Wm⁻²

1.4 A doctor counts 72 heartbeats in 1	1.5 A marine survey ship sends a sound
min. Calculate the frequency and	wave straight to the sea bed. It
period of the heartbeats.	receives an echo 1.5s later. The speed
Solution:	of sound in a sea water is 1500 ms ⁻¹ .
	Find the depth of the sea at this
<u>Given Data</u> :	position. (BWP-G2)-2016
No of heartbeats = $n = 72$	Solution:
Time = $t = 1 \min = 60 \sec \theta$	
<u>To Find</u> :	<u>Given Data</u> :
Frequency $= f = ?$	Time to hear echo = $t = 1.5$ s
Time period = $T = ?$	Speed of sound = $v = 1500 \text{ms}^{-1}$
Solution: We know that	To Find:
	Depth of sea = $h = ?$
c n	Formula:
1 = -t	$S = v \times t$
$= \frac{72}{3} \Rightarrow 1.2s^{-1} \qquad (\because s^{-1} = Hz)$	Calculation:
60 sec	By using formula, we have
	S = vt
As $T = \frac{1}{f}$	=(1500)(1.5)
1 -	= 2250m
$=\frac{1}{1.2s^{-1}}$	For hearing echo, the minimum depth from sea bed
T = 0.833 sec.	to ship must be half of this depth (2250m)
	Therefore,
	$h - \frac{S}{2}$
Result:	2
Hence, the frequency and time	$-\frac{2250}{2250}$ \rightarrow $h-1125m$
period of heart beat is 1.2 Hz and	$2 \qquad \qquad$
v.055 s respectively.	Result:
	Hence, the depth of sea from a marine suwey ship is 1125 m.

11.6 A student clapped his hands near a cliff and heard the echo after 5s. What is the distance of the cliff from the student if the speed of the sound, v is taken as 346 ms⁻¹?

Given data:

Time to clear echo = t = 5s

Speed = $v = 346 \text{ ms}^{-1}$

<u>To Find</u>:

Distance = d = ?

Formula:

 $\mathbf{S} = \mathbf{v} \times \mathbf{t}$

Calculation:

By using formula, we have

S = vt= 346 x 5 S = 1730 m

For hearing echo, the minimum distance from obstacle to the source of sound must be half of this distance (1730m).

Therefore,

$$d = \frac{S}{2}$$
$$d = \frac{1730}{2}$$

d = 865 m

Result:

Hence, the distance of different from the student to hear the echo is 865 m.

11.7 A ship sends out ultrasound that returns from the seabed and is detected after 3.42s. If the speed of ultrasound through seawater is 1531 ms⁻¹, what is the distance of the seabed from ship? Solution:

Given data:

Time taken by sound = t = 3.428Speed of sound = $v = 1531 \text{ ms}^{-1}$

To Find: Distance of seabed from ship = d = ? Calculation: By using formula, we have S = vt = 1531 x 3.42 = 5236.02 m

For hearing echo, the minimum depth of the seabed from the must be half of this distance (5236.02m)

 $d = \frac{s}{2}$ $d = \frac{5236.02}{100}$

d = 2618m

Result:

Hence, the distance of seabed from ship is 2618 m.

11.8	The highest frequency sound	11.9 A sound wave has frequency of 2 kHz
	humans can hear is about 20,000	and wavelength 35cm. How long will
	Hz. What is the wavelength of	it take to travel 1.5 km? (I HD C2) 2015
	sound in air at this frequency at	/ (I HD C1) 2016
	temperature of 20°C? What is the	Solution
	con hear of about 20 Hz? Assume	<u>Solution</u> :
	the speed of sound in air at 20° C is	<u>Given Data</u> :
	343 ms^{-1} .	Frequency of wave = $f = 2 \times 10^{9}$ Hz
	Solution:	Wavelength = λ = 35 cm = 0.35m
	<u>Given Data</u> :	Distance travelled = $s = 1.5 \text{ Km} = 1500 \text{ m}$
	Highest frequency = $f_1 = 20,000 \text{ Hz}$	<u>To Find</u> :
	Lowest frequency = $f_2 = 20$ Hz	Time taken $= t = ?$
	Speed of sound = $v = 343 \text{ ms}^{-1}$	<u>Formula</u> :
	To Find:	$S = v \times t$
	Wavelength of highest frequency = $\lambda_1 = ?$	Calculation:
	Wavelength of lowest frequency = $\lambda_2 = ?$	By wave equation
	<u>Formula</u> :	$V = f\lambda$
	$v = f\lambda$	$-2 \times 10^3 \text{ Hz} \times 0.35 \text{ m}$
	Calculation:	$V = 700 \text{ ms}^{-1}$
	By using wave equation, we have	v = 700 ms
	$v = f\lambda$	$AS S = V \times I$
	$\rightarrow 2 \cdot - \frac{v}{v}$	$1500 \text{ m} = 700 \text{ ms} \times 1$
	$\rightarrow \kappa_1 - \frac{1}{f_1}$	$t = \frac{1500 \mathrm{m}}{1000 \mathrm{m}}$
	$343 \mathrm{ms}^{-1}$	$700{\rm ms}^{-1}$
	$=\frac{343118}{20,000-1}$	t = 2.1 sec
	20,000\$	Result:
	$\lambda_1 = 0.01715 \text{ m} = 1.7 \times 10^{-2} \text{ m}$	Hence, to travel 1.5 km sound wave
	As $V = f_2 \lambda_2$	will take 2.1 s.
	. V	
	$\lambda_2 = \frac{1}{\mathbf{f}_1}$	
	r_2	
	$\Rightarrow = \frac{343 \text{ms}^2}{343 \text{ms}^2}$	
	20s ⁻¹	
	$=17.15\mathrm{m}$	
	$\lambda_2 = 17.2 \text{m}$	
Resul	<u>t</u> :	

Hence, the wavelength of highest and wavelength of lowest frequency is 1.7×10^{-2} m respectively.

