Watch Video Explanation of these notes on our website: www<mark>.LastHopeStudy.Com</mark>

Un	it – 7	Linear Equations and Inequ	alities
	Download All Subjec	Mathematics-9 Unit 7 – Review Exercise 7 ts Notes from website	/.com
Q.1 (i)	Choose the correct answ Which of the following is $(a) = 8$	er s the solution of the inequality $3-4x \le 11$?	(A.B)
	(a) -8 (c) $-\frac{14}{4}$	(b) -2 (d) None of these	
(ii)	A statement involving an (a) Equation (c) Inequality	ny of the symbols <, >, ≤or >, is called (b) Identity (d) Linear equation	(K.B)
(iii)	x = is a solution of	the inequality $-z < x > \frac{3}{2}$	(U.B)
	(a) – 5	(b) 3	
	(c) 0	(d) $\frac{3}{2}$	
(iv)	If x is no larger than 10, (a) $x \le 8$	then (FSD 2014, 15, SWL 2017, RWP 2014, SGD 2014, D. (b) $x \ge 10$	(U.B) G.K 2013)
(v)	(c) $x < 10$ If the capacity of an elev (a) $c < 1600$	(d) $x > 10$ rator is at most 1600 pounds then (LHR 2013, GRW 2014, FSD 2014, 17, SWI (b) $c \ge 1600$	(K.B) 2 2014, 16)
(vi)	(c) $c \le 1600$ x = 0 is a solution of the (a) $x > 0$ (c) $x + \frac{z}{2} < 0$	(d) $c > 1600$ inequality (b) $3x+5 < 0$ (d) $x-2 < 0$	(A.B)
		iiiiivVvibccbCd	
Q.2 (i) (ii) (iii) (iv) (v)	Identify the following sta The equation $3x-5=7-7$ The equation $x-0.3x=6$ The equation $-2x+3=8$ To eliminate fractions denominators 4(x+3)=x+3 is a conditional statement of the state	Atement as true or false - x is a linear equation. 0.7x is an identity - is equivalent to $-2x=11$ we multiply each side of an equation by the L tional equations	(U.B) (True) (True) (False) C.M of (True) (True)

(vi) The equation 2(3x+5)=6x+12 is an in consistent equation (True)

MATHEMATICS-9

Uni	t – 7 Linear Equations and Inequalities		
(vii)	To solve $\frac{2}{3}x = 12$, we should multiply each side by $\frac{2}{3}$ (False)		
(viii) (ix) Q.3 (i) Ans	Equations having exactly the same solution are called equivalent equations. (True) A solution that does not satisfy the original equation is called extra solution (True) Answer the following short question. Define a linear inequality in one variable (K.B) A linear inequality in one variable x is an inequality in which the variable x occurs only to the first power and has the standard form $ax + b < 0$, $a \ne 0$		
(ii) Ans	State the Trichotomy and transitive properties of in equalities(K.B)Trichotomy Property(K.B)For any $a, b \in R$ one and only one of the following statements in true. $a < b$ or $a = b$, or $a > b$ Transitive PropertyLet $a, b, c \in R$.		
(a) (b)	If $a > b$ and $b > c$, then $a > c$ If $a < b$ and $b < c$, then $a < c$		
(iii)	The formula relating degree Fahrenheit to degree Celsius is $F = \frac{9}{5}c + 32$ for what		
Ans	value of c is F< O was $(K.B) + (A.B) + (U.B)$ $F = \frac{9}{5}c + 32$ $\frac{9}{5}c + 32 = F$ Since F < 0		
So	$\frac{9}{5}c + 32 < 0$ $\frac{9c + 160}{5} < 0$		
Or Or Or	$9c + 160 < 0 \times 5$ 9c + 160 < 0 9c < -160		
Or	$c < -\frac{160}{9}$		
(iv)	Seven times the sum of an integer and 12 is at least 50 and at most 60. Write and solve the inequality that expresses this relationship (U.B)		
Soluti	on: Let the integer = y Sum of integer and $12 = y + 12$		
	Seven times sum of integer and $12 = 7(y+12)$		
	According to condition $50 \le 7(y+12) \le 60$		
	$\frac{50}{7} \le 7 \frac{(y+12)}{7} \le \frac{60}{7}$ $\frac{50}{7} \le y+12 \le \frac{60}{7}$		

 $\frac{50}{7} - 12 \le y + \cancel{2} - \cancel{2} \le \frac{60}{7} - 12$

Unit – 7

Linear Equations and Inequalities

 $\frac{50-84}{7} \le y \le \frac{60-84}{7}$ $\frac{-34}{7} \le y \le \frac{-24}{7}$ **Solution Set** = $\left\{ y \mid \frac{-34}{7} \le y - \frac{24}{7} \right\}$ Solve each of the following and check for extraneous solution if any **Q.4** $\sqrt{2t+4} = \sqrt{t-1}$ (i) (A.B) Solution: $\sqrt{2t+4} = \sqrt{t-1}$ Taking square on both side $\left(\sqrt{2t+4}\right)^2 = \left(\sqrt{t-1}\right)^2$ 2t + 4 = t - 12t - t = -1 - 4t = -5To check $\sqrt{2t+4} = \sqrt{t-1}$ When t = -5 $\sqrt{2(-5)+4} = \sqrt{t-5-1}$ $\sqrt{-10+4} = \sqrt{-6}$ $\sqrt{-6} = \sqrt{-6}$ L.H.S = R.H.SSolution Set = $\{-5\}$ $\sqrt{3x-1} - 2\sqrt{8-2x} = 0$ **(ii)** (A.B) **Solution:** $\sqrt{3x-1} - 2\sqrt{8-2x} = 0$ $\sqrt{3x-1} = 2\sqrt{8-2x}$ Taking square on both side $\left(\sqrt{3x-1}\right)^2 = \left(2\sqrt{8-2x}\right)^2$ 3x-1=4(8-2x)3x - 1 = 32 - 8x3x + 8x = 32 + 111x = 33 $x = \frac{33}{2}$ 11 x = 3To check $\sqrt{3x-1} - 2\sqrt{8-2x} = 0$ When x = 3 $\sqrt{3(3)-1} - 2\sqrt{8-2(3)} = 0$ $\sqrt{9-1} - 2\sqrt{8-6} = 0$ $\sqrt{8} - 2\sqrt{2} = 0$

U nit – 7		Linear Equations and Inequalities	
Q.5 (i)	$2\sqrt{2} - 2\sqrt{2} = 0$ 0 = 0 L.H.S = R.H.S Solution Set = {3} Solve for x 3x+14 -2=5x	(A.B)	
	Solution: $ 3x+14 - 2 = 5x$		
	3x+14 = 5x+2		
	$3x+14 = \pm (5x+2)$		
	3x+14=5x+2	3x+14 = -(5x+2)	
	14 - 2 = 5x - 3x	2n + 14 - 5n - 2	
	$\frac{12}{2} = x$	3x + 14 = -3x - 2 3x + 5x = -2 - 14	
	<i>x</i> = 6	$8x = \frac{-16}{8}$	
	To check	x = -2	
	3x+14 -2=5x	3x+14 -2=5x	
	When $x=6$ 3(6)+14 = 2-5(6)	when $x = -2$ 3(-2) + 14 = 2 - 5(-2)	
	5(0)+14 - 2 = 5(0)	5(-2)+14 -2=5(-2)	
	10+14 -2=50 32-2-30	-0+14 -2=-10 8-210	
	32 = 30 30 = 30	6 = -10	
	Solution Set = $\{6\}$		
(ii)	$\frac{1}{3} x-3 = \frac{1}{2} x+2 $	(A.B)	
Solution $\frac{1}{3} x-3 = \frac{1}{2} x+2 $			
	$\frac{2}{3} x-3 = x+2 $		
	$\frac{2}{3} = \frac{ x+2 }{ x-3 }$ x+2 2		
	$\frac{x+2}{x-3} = \pm \frac{2}{3}$		
	$\frac{x+2}{x-3} = \frac{2}{3}$ and	$\frac{x+2}{x-3} = -\frac{2}{3}$	
	3(x+2)=2(x-3)	3(x+2) = -2(x-3)	
	3x + 6 = 2x - 6	3x + 6 = -2x + 6	
	3x - 2x = -6 - 6	3x + 2x = +6 - 6	

MATHEMATICS-9

Watch Video Explanation of these notes on our website: www.LastHopeStudy.Com

U nit – 7		Linear Equations and Inequalities			
	x = -12	5x = 0			
	To check	$x = \frac{0}{5} \implies x = 0$			
	$\frac{1}{3} x-3 = \frac{1}{2} x+2 $	$\frac{1}{3} x-3 = \frac{1}{2} x+2 $			
	When $x = -12$	when $x = 0$			
	$\frac{1}{3} -12-3 =\frac{1}{2} -12+2 $	$\frac{1}{3} 0-3 = \frac{1}{2} 0+2 $			
	$\frac{1}{3} -15 = \frac{1}{2} -10 $	$\frac{1}{3} -3 = \frac{1}{2} 2 $			
	$\frac{1}{\mathcal{Z}}\left(\mathcal{IS}^{5}\right) = \frac{1}{\mathcal{Z}}\left(\mathcal{IO}^{5}\right)$	$\frac{1}{\not\mathcal{Z}} \Big(\mathcal{Z}^1 \Big) \!=\! \frac{1}{\mathcal{Z}} \Big(\mathcal{Z}^1 \Big)$			
	5=5	$\frac{1}{3}(3) = 1$			
		1 = 1			
	Solution Set = $\{-12,$	}			
Q.6	Solve the following	nequality			
(iii)	$-\frac{1}{3}x + 5 \le 1$	(U.B)+(K.B)			
Solution $-\frac{1}{x+5} \le 1$		LAS			
	3	HOPE			
	$-\frac{1}{3}x \le 1-5$	STUDY			
	$-\frac{1}{3}x \le -4$				
	$x \ge -4 \times (-3)$				
	$x \ge 12$	12)			
	Solution Set = $\{x \mid x = 1 - 2x\}$	12}			
(i)	$-3 < \frac{1-2x}{5} < 1$				
Solution $-3 < \frac{1-2x}{5} < 1$					
	$-3 < \frac{1-2x}{5}$	$\frac{1-2x}{5} < 1$			
	-15 < 1 - 2x	1 - 2x < 5			
	-15-1 < -2x	-2x < 5-1			
	-16 < -2x -16	-2x < 4 4			
	$\frac{1}{-2} > x$	$x > \frac{1}{-2}$			
	8 > x	x > -2			
	x < 8 -2 < x < 8	-2 < x			

MATHEMATICS-9

Unit – 7

Linear Equations and Inequalities

Solution Set = $\{x \mid -2 < x < 8\}$

