Unit – 9

Introduction to Coordinate Geometry

Mathematics-9 Unit 9 – Exercise 9.2

Download All Subjects Notes from website 🕀 www.lasthopestudy.com

Exercise 9.2

Q.1 Show whether the points with vertices (5,-2),(5,4) and (-4,1) are the vertices of an equilateral triangle or an isosceles triangle P(5,-2),Q(5,4),R(-4,1) (A.B)

Solution:

We know that the distance formula is

$$|Q R| = \sqrt{|-4-5|^2 + |1-4|^2}$$

$$|Q R| = \sqrt{(-9)^2 + (-3)^2}$$

$$|Q R| = \sqrt{81+9}$$

$$|Q R| = \sqrt{90}$$

$$|Q R| = \sqrt{90}$$

$$|RP| = \sqrt{9 \times 10} = 3\sqrt{10}$$

$$|RP| = \sqrt{(5+4)^2 + (-3)^2}$$

$$|RP| = \sqrt{(5+4)^2 + (-3)^2}$$

$$|RP| = \sqrt{90}^2 + 9$$

$$|RP| = \sqrt{90}$$

$$|RP| = \sqrt{90} = 3\sqrt{10}$$

As $|QR| = |PR|$

Lengths of two sides of triangle are equal, so it is an isosceles triangle.

Q.2 Show whether or not the points with vertices (-1,1),(5,4),(2,-2)and (-4,1) form a Square? (A.B)

Solution:

$$P(-1,1)Q(5,4)R(2,-2)S(-4,1)$$

Distance = $\sqrt{|x_2 - x_1|^2 + |y_2 - y_1|^2}$
 $|P Q| = \sqrt{|5 - (-1)^2| + |4 - 1|^2}$
 $|P Q| = \sqrt{|5 + 1|^2 + |3|^2}$

MATHEMATICS-9

$\left P \ Q\right = \sqrt{6^2 + 9}$
$\left P \ Q\right = \sqrt{36+9}$
$ P Q = \sqrt{45}$
$\left P \ Q\right = \sqrt{9 \times 5}$
$ P Q = 3\sqrt{5}$
$ Q R = \sqrt{ 2-5 ^2 + -2-4 ^2}$
$ Q R = \sqrt{(-3)^2 + (-6)^2}$
$\left Q R\right = \sqrt{9 + 36}$
$ Q R = \sqrt{45}$
$ Q R = \sqrt{9 \times 5}$
$ Q R = 3\sqrt{5}$
$ R S = \sqrt{ -4-2 ^2 + 1-(-2) ^2}$
$ R S = \sqrt{(-6)^2 + (1+2)^2} = \sqrt{36 + (3)^2}$
$\left R S\right = \sqrt{36+9}$
$ R S = \sqrt{45}$
$\left R \ S\right = \sqrt{9 \times 5}$
$\left R S\right = 3\sqrt{5}$
5 (5,4)

(-1.

(2-2)

(4,1)

equal so it is not square.

$$|P Q| = |Q R| = |R S| \neq |S P|$$

Q.3 Show whether or not the points
with coordinates (1,3),(4,2) and
(-2,6) are vertices of a right
triangle? (A.B)
Solution:
 $A(1,3), B(4,2), C(-2,6)$
 $d = \sqrt{|x_2 - x_1|^2 + |y_2 - y_1|^2}$
 $|A B| = \sqrt{|4 - 1|^2 + |2 - 3|^2}$
 $|A B| = \sqrt{(3)^2 + (-1)^2}$
 $|A B| = \sqrt{9 + 1}$
 $|A B| = \sqrt{10}$
(2,6) (2,6) (4,2) (4,2) (4,2)

Introduction to Coordinate Geometry

 $|S P| = \sqrt{|-4 - (-1)|^2 + |1 - 1|^2}$ $|S P| = \sqrt{(-4 + 1)^2 + (0)^2}$

If all the lengths are same then it will be a Square, all the lengths are not

 $\left|S P\right| = \sqrt{\left(-3\right)^2}$

 $|S P| = \sqrt{9}$

|SP| = 3

MATHEMATICS-9

Unit – 9

Q.4

$$|B \ C| = \sqrt{|-2-4|^2 + |6-2|^2}$$

$$|B \ C| = \sqrt{(-6)^2 + (4)^2}$$

$$|B \ C| = \sqrt{36 + 16}$$

$$|B \ C| = \sqrt{52}$$

$$|C \ A| = \sqrt{|-2-1|^2 + |6-3|^2} = \sqrt{(-3)^2 + (3)^2}$$

$$|C \ A| = \sqrt{9+9}$$

$$|C \ A| = \sqrt{18}$$
By Pythagoras theorem
$$(Hyp)^2 = (Base)^2 + (Perp)^2$$

$$(\sqrt{52})^2 = (\sqrt{18})^2 + (\sqrt{10})^2$$

$$52 = 18 + 10$$

$$52 = 28$$
So it is not right angle triangle.
Q.4 Use distance formula to prove whether or not the points
$$(1,1), (-2,-8) \text{ and } (4,10) \text{ lie on a straight line?} (A.B)$$
Solution:
$$A(1,1), B(-2,-8), C(4,10)$$

$$d = \sqrt{|x_2 - x_1|^2 + |y_2 - y_1|^2}$$

$$|A \ B| = \sqrt{|-2-1|^2 + |-8-1|^2}$$

$$|A \ B| = \sqrt{9}$$

$$|B \ C| = \sqrt{(4+2)^2 + (10+8)}$$
$$|B \ C| = \sqrt{(6)^2 + (18)^2}$$
$$|B \ C| = \sqrt{36+324}$$
$$|B \ C| = \sqrt{36}$$
$$|B \ C| = \sqrt{36}$$
$$|B \ C| = \sqrt{36 \times 10}$$
$$|B \ C| = 6\sqrt{10}$$
$$|A \ C| = \sqrt{|4-1|^2 + |10-1|^2}$$
$$|A \ C| = \sqrt{(3)^2 + (9)^2}$$
$$|A \ C| = \sqrt{9}$$

$$|A C| + |A B| = |B C|$$

 $3\sqrt{10} + 3\sqrt{10} = 6\sqrt{10}$

 $6\sqrt{10} = 6\sqrt{10}$

It means that they lie on same line so they are collinear.

Find K given that point (2, K) Q.5 is equidistance from (3, 7) and (9,1)

Solution:

Unit – 9

Introduction to Coordinate Geometry

MATHEMATICS-9

7

are the vertices of a rectangle.

Unit -9
9.7 Verify whether or not the points
$$O(0,0)$$
, $A(\sqrt{3},1)$, $B(\sqrt{3},-1)$, are the vertices of an equilateral triangle. (A.B)
Solution:
 $d = \sqrt{|x_2 - x_i|^2 + |y_2 - y_i|^2}$
 $|O A| = \sqrt{|\sqrt{3} - 0|^2 + |-1 - 0|^2}$
 $|O A| = \sqrt{|\sqrt{3} - 0|^2 + |-1 - 0|^2}$
 $|O A| = \sqrt{4}$
 $|O A| = 2$
 $|O B| = \sqrt{|\sqrt{3} - 0|^2 + |-1 - 0|^2}$
 $|O B| = \sqrt{|\sqrt{3} - 0|^2 + |-1 - 0|^2}$
 $|O B| = \sqrt{|\sqrt{3} - \sqrt{3}|^2 + (-1 - 1)^2}$
 $|O B| = \sqrt{1}$
 $|O B| = 2$
 $|A B| = \sqrt{(-3)^2} = \sqrt{9}$
 $|B C| = \sqrt{(-6 - 5|^2 + |-8 - (-8)|^2}$
 $|D C| = \sqrt{(-6 - 6)^2 + (-5 + 8)^2}$
 $|D C| = \sqrt{(-6 - 6)^2 + (-5 + 8)^2}$
 $|D C| = \sqrt{(-6 - 6)^2 + (-5 - 8)^2}$
 $|D A| = \sqrt{(-6 - 6)^2 + (-5 - 8)^2}$
 $|D A| = \sqrt{(-6 - 6)^2 + (-5 - 8)^2}$
 $|D A| = \sqrt{(0)^2 + (-3)^2} = \sqrt{0 + 9}$
 $|D A| = \sqrt{0}$
 $|D A| = \sqrt{9}$
 $|D A| = \sqrt{9}$
 $|D A| = \sqrt{9}$

MATHEMATICS-9

But
$$|M N| = |P Q|$$
 and $|N P| = |M Q|$

Opposite side are equal so it is a Parallelogram.