
According to Pairing scheme 2025

All long Questions (Important)

Chapter 3

1. What is data modeling. Discuss ingredients of data modeling. (Book Pg. 23)

2. Explain ER diagram with an example. (Book Pg. 26)

3. Explain Conceptual (also called logical) database design. (Book Pg. 28)

4. Explain physical database design / Explain components of physical database design /

Explain Data distribution strategies. (same answer on (Book Pg. 29)

Chapter 9

1. Define identifier. Explain its types (Book Pg. 145)

2. Define variable. Explain variable declaration and initialization. (Book Pg. 146)

3. Define variable. Explain rules for naming variables. (Book Pg. 148)

4. Explain data types for integers. (Book Pg. 150)

5. Explain data types for floating point numbers. (Book Pg. 150)

6. Explain data types for characters. (Book Pg. 151)

7. Explain logical operators. (Book Pg. 153)

8. Explain increment decrement operators. (Book Pg. 155) 9. Define comment. Explain its

types. (Book Pg. 159) Chapter 11 + 12

1. Do program from these two chapters (Example and Exercise)

Chapter 3

Q1. What is Data Modeling? Discuss Its Main Components with Examples.

Data modeling is the process of identifying important data items and showing how they are

related. It helps in designing the structure of a database clearly. Data modeling is often done

using the Entity-Relationship (ER) model.

Entity

An entity is anything that exists and has importance in the system. It can be a person, place,

object, or idea. Examples of entities include STUDENT, TEACHER, CAR, or CLASS. In ER diagrams,

an entity is shown using a rectangle.

Attribute

Attributes describe the features or properties of an entity. For example, the STUDENT entity

may have attributes like Name, Roll No, and Address. In an ER diagram, attributes are shown

using oval shapes connected to the entity.

Relationship

A relationship shows how two or more entities are linked. For example, a BOOKSTORE may sell

or stock BOOKS. In an ER diagram, relationships are shown using diamond shapes placed

between the related entities.

Q2. What is an ER Diagram? Explain with an Example.

An ER diagram is a drawing that shows the structure of a database. It explains how data is

stored and how different data items are related. ER diagrams are used to design the database

system before building it.

Rectangle: Entity

Entities are shown using rectangles in the ER diagram. Each entity stands for a real-world object

like a STUDENT, TEACHER, or CAR.

Oval: Attribute

Attributes are the details or features of an entity. They are shown using ovals and are connected

to the related entity using a line.

Diamond: Relationship

Relationships are shown using diamond shapes. They describe how two or more entities are

related. The name of the relationship is written inside the diamond.

Lines: Connectors

Lines are used to connect entities with their attributes and relationships. They help show how

everything is linked.

Example – College Enrollment System

In a college enrollment system, the main entities are STUDENT and COLLEGE. A STUDENT enrolls

in a COLLEGE. The attributes of the STUDENT include stuID, stuName, and stuAddress, while the

attributes of the COLLEGE include colID and colName. These actions are represented as

relationships in the ER diagram, where a STUDENT is associated with a COLLEGE.

Q3. What is Conceptual or Logical Database Design?

Conceptual database design, also called logical database design, is the step where the full

structure of the database is planned. It helps to organize data properly before it is stored in the

system.

Representing Entities

In this step, each entity from the ER diagram becomes a table in the database. The name of the

entity becomes the table name. The main field (like Roll No for STUDENT) becomes the primary

key. Other fields are called non-key attributes.

Representing Relationships

Relationships are added in two ways. One way is to use a foreign key, which is the primary key of

another table. For example, in a college system, the STUDENT table can include colID as a

foreign key, which links to the COLLEGE table, showing which college the student belongs to.

Merging Relations

Sometimes, there are repeated or similar tables. These are merged into one to remove extra

data. For example, if we have separate tables for STUDENT and STUDENT_ADDRESS, we can

merge them into one table to avoid repeating address information. This process is called view

integration.

Normalization

Normalization is used to make the data structure simple and error-free. It removes extra data

and solves problems like update errors. For example, instead of storing a student's address in

multiple places, we store it in one table and link it to the student’s record, making the database

easier to manage.

Q4. What is Physical Database Design?

Physical database design is the step where the logical plan is changed into a working system.

This design controls how data is stored on the computer and how fast and safe it is to use.

Data Volume and Usage

This step checks how big the database will be and how often it will be used. It helps decide how

much storage is needed and how to set up the system.

Data Distribution Strategy

This decides where the data will be stored, especially in systems that work over a network.

• Centralized: All data is stored in one place.

• Partitioned: Data is divided and stored in different locations.

• Replicated: Full copies of the data are kept at many locations.

• Hybrid: Important data is copied to many places; other data is kept in one place.

File Organization

This means how data is saved on the storage device. The designer chooses the best method

based on the hardware, software, and user needs.

Indexes

Indexes help find data faster. They work like a search guide. Indexes can be made for main fields

like the primary key or for other fields too.

Integrity Constraints

These are rules to make sure that data is correct and reliable. For example, no two students can

have the same ID. These rules protect the quality of the data.

Certainly! Here's a combined long question that explains all four data distribution strategies

(Centralized, Partitioned, Replicated, and Hybrid) along with their advantages and

disadvantages, written in one clear and simple answer.

Q5. What Are Data Distribution Strategies? Explain Centralized, Partitioned, Replicated, and

Hybrid Approaches with Their Advantages and Disadvantages.

In a distributed database system, data can be stored in different ways depending on the needs

of users and the network. These methods are called data distribution strategies. They help in

deciding where the data should be kept so that it is available, fast to access, and safe. The main

types of data distribution strategies are: Centralized, Partitioned, Replicated, and Hybrid.

Centralized Data Distribution

In centralized distribution, all the data is stored at one location or server. Every user connects

to this single place to access or update the data. This method is usually used in small

organizations or when all users work in the same building.

Advantages:

• Easy to manage because the data is in one place.

• Simple backup and security management.

• No chance of data conflict since there is only one copy.

Disadvantages:

• If the central system fails, the entire database stops working.

• Remote users may experience slow access.

• High communication cost for distant users.

Partitioned Data Distribution

In this method, the database is divided into smaller parts, called partitions, and each part is

stored at a different location. Each location stores only the data it needs.

Advantages:

• Data is closer to users, so access becomes faster.

• Reduces the load on the main server.

• Can improve speed and system performance.

Disadvantages:

• Difficult to manage many locations.

• Searching across all partitions takes more time.

• Needs careful planning to divide the data properly.

Replicated Data Distribution

In replicated distribution, a full copy of the database is stored at multiple sites. Every site has

the same data.

Advantages:

• Data remains available even if one site fails.

• Faster access for local users.

• Increases system reliability and safety.

Disadvantages:

• Hard to update all copies at the same time.

• Risk of different data at different places if updates fail.

• Requires more storage space.

Hybrid Data Distribution

Hybrid distribution is a mix of centralized, partitioned, and replicated strategies. In this system,

important (critical) data is copied to many places, and non-critical data is kept at one location.

Advantages:

• Balances speed, cost, and storage.

• Important data is always available to users.

• Offers flexibility and better performance.

Disadvantages:

• More complex to manage.

• Needs planning to decide what data is critical.

• If non-critical data is missing, it may cause problems.

Conclusion

These strategies are chosen based on the size of the organization, number of users, network

structure, and the importance of data availability. Each has its own benefits and limitations, and

choosing the right one helps in building a fast and reliable database system.

Chapter 9

1. Define identifier. Explain its types.

An identifier is the name given to a variable, constant, function, or label in a program. It is

used to identify the name of a memory location or function in a meaningful way.

Types of Identifiers:

1. Standard Identifiers:

These are pre-defined identifiers that have a special meaning in C language. They

are part of the C library and are used to perform specific functions. Standard

identifiers cannot be changed or used for other purposes in the program Examples:

printf, scanf

2. User-defined Identifiers:

These are created by the programmer to store data or program results. They are used for

variables, functions, and other user-defined elements. These identifiers can be named as

per the programmer's choice, as long as they follow certain naming rules in C. Examples:

my_name, marks, age

3. Rules for Naming Identifiers:

• Identifiers must start with a letter (a-z, A-Z) or an underscore (_), followed by letters,

digits (0-9), or underscores.

• Identifiers cannot be the same as keywords (like int, return, if, etc.).

• C is case-sensitive, so my_name and MY_NAME would be considered two different

identifiers.

2. Define variable. Explain variable declaration and initialization.

A variable is a named memory location used to store input data and the results of

computations during program execution. Its value can be changed during execution, and

new values replace old ones.

Variable Declaration:

It is the process of specifying the variable name and its data type. The compiler uses this to

allocate memory. Syntax: data_type variable_name; Example: int marks;

Variable Initialization:

Assigning a value to a variable at the time of declaration is called initialization.

Syntax:

data_type variable_name = value; Example:

int n = 100;

If not initialized, variables may hold garbage values and produce errors.

3. Define variable. Explain rules for naming variables.

A variable is a named memory cell that holds data that may change during the execution of

a program.

Rules for Naming Variables:

• The first character must be a letter or underscore _.

• Can contain letters, digits, and underscores.

• Cannot contain spaces or special characters like @, #, %.

• Cannot use reserved keywords like int, double.

• Variables are case-sensitive.

• Should be meaningful and descriptive.

• Follow naming conventions like InterestRate or my_name.

4. Explain data types for integers

In C language, integer data types are used to store whole numbers that do not have decimal

points. These numbers can be either positive or negative. C provides different types of

integer data types to store numbers of different ranges.

Types of Integer Data Types in C: int

(Integer):

This data type is used to store normal whole numbers. It uses 2 bytes of memory and stores

values from −32,768 to +32,767.

short int (or short):

This is also used to store whole numbers. It uses 2 bytes of memory, and its range is the

same as int, which is −32,768 to +32,767 (−2¹⁵ to 2¹⁵ − 1). long int (or long):

This data type is used to store large integer values. It uses 4 bytes of memory and can store

values from −2,147,483,648 to +2,147,483,647 (−2³¹ to 2³¹ − 1). unsigned int:

This type stores only positive whole numbers. It uses 2 bytes of memory and stores values

from 0 to 65,535 (0 to 2¹⁶ − 1).

unsigned long int:

This type is used to store large positive numbers. It uses 4 bytes of memory and stores

values from 0 to 4,294,967,295 (0 to 2³² − 1).

5. Explain data types for floating point numbers

Floating point data types are used to store numbers that have decimal points or fractional

parts. These are also called real numbers. In C language, there are different floating point

data types to store numbers with different sizes and precision.

Types of Floating Point Data Types in C:

float:

This data type is used to store real numbers with small precision. It uses 4 bytes of memory

and stores values from 10⁻³⁸ to 10³⁸. It gives up to 6 digits after the decimal point.

double:

This is used for storing large real numbers with higher precision. It uses 8 bytes of memory

and can store values from 10⁻³⁰⁸ to 10³⁰⁸. It gives up to 15 digits after the decimal point.

long double:

This data type is used for storing very large real numbers with very high precision. It uses 10

bytes of memory and can store values from 10⁻⁴⁹³² to 10⁴⁹³². It gives up to 19 digits after the

decimal point.

6. Explain data types for characters

The char data type is used to store a single character like a letter, digit, or symbol. It takes 1

byte of memory and stores the ASCII value of the character. For example, the character 'A' is

stored as 65 and 'a' as 97. Even numbers like '6' are stored using their ASCII codes, such as

54.

Features of char:

The char type stores one character and uses 1 byte of memory. Characters are written in

single quotes like 'a', '5', or '$'.

Signed and Unsigned char:

By default, char is unsigned. An unsigned char can store values from 0 to 255. A signed char

can store values from −128 to +127.

Since characters are stored as numbers (ASCII values), we can also do arithmetic operations

on them, like adding or comparing characters.

Chapter 11 Exercise Solved Programs

Example 1: Calculate Square root of a positive number

#include <stdio.h>
#include <math.h>

int main() {
 int number;

 // Input positive number

printf("Enter a positive number: ");
scanf("%d", &number);

 // Check if the number is positive
 if (number < 0) { printf("Please enter a

positive number.\n");
 return 1; // Exit with an error code
 }

 // Calculate and display the square root

float squareRoot = sqrt(number);
 printf("Square root of %d: %.2f \n", number, squareRoot);

}

 Example 2: Accepts three numbers and display largest number.

#include <stdio.h> int
main() {
 // Input three numbers float

num1, num2, num3;
printf("Enter three numbers: ");
 scanf("%f %f %f", &num1, &num2, &num3);

 // Check and display the largest number if
(num1 >= num2 && num1 >= num3) {

printf("The largest number is %.2f\n", num1); }

else if (num2 >= num1 && num2 >= num3) {
 printf("The largest number is %.2f\n", num2);
 } else {
 printf("The largest number is %.2f\n", num3);
 }

}

 Example 3: Accepts a number from user and determine whether positive, negative or zero.

#include <stdio.h> int

main() {
 // Input three numbers float
num1, num2, num3;

printf("Enter three numbers: ");
 scanf("%f %f %f", &num1, &num2, &num3);

 // Check and display the largest number if

(num1 >= num2 && num1 >= num3) {
printf("The largest number is %.2f\n", num1); }

else if (num2 >= num1 && num2 >= num3) {
 printf("The largest number is %.2f\n", num2);
 } else {
 printf("The largest number is %.2f\n", num3);
 }

}

Example 4: Accepts a character from user and determine whether it is vowel or not.
int main() { // Input

a character
 char ch;
 printf("Enter a character: ");

scanf(" %c", &ch);
 // Check and display whether the character is a vowel or not
switch (ch) { case 'a': case 'A': case 'e': case

'E': case 'i': case 'I': case 'o': case 'O':
case 'u': case 'U':
 printf("The character '%c' is a vowel.\n", ch);

break; default:
 printf("The character '%c' is not a vowel.\n", ch);
 }
}

Chapter 11 Exercise Solved Programs

Question 8: write a program that Compute the area of a square or a triangle (Ask user to enter S for

square and T for Triangle) #include <stdio.h> int main() { char figureType;
 printf("Enter the first character of the figure name (S or T): ");
scanf(" %c", &figureType);

 if (figureType == 'S' || figureType == 's') {
 float side, area;
 printf("Enter the side length of the square: ");
scanf("%f", &side); area = side * side;

printf("Area of the square: %f\n", area); } else if
(figureType == 'T' || figureType == 't') { float

base, height, area;
 printf("Enter the base length of the triangle: ");

scanf("%f", &base);
 printf("Enter the height of the triangle: ");

scanf("%f", &height); area = 0.5 * base *

height;
 printf("Area of the triangle: %f\n", area);
 } else {
 printf("Invalid figure type.\n");
 }

 // Question 9: Check if a year is a leap year

#include <stdio.h> int

main() { int year;

printf("\nEnter a year: ");
 scanf("%d", &year);

 if ((year % 4 == 0 && year % 100 != 0) || (year % 400 == 0)) {
printf("Leap year\n");
 } else {
 printf("Not a leap year\n");
 }
}

// Question 10: Display a message based on temperature

 #include <stdio.h> int main() {

float temperature;

printf("\nEnter temperature: ");
 scanf("%f", &temperature);

 if (temperature > 35) {
printf("Hot day\n");
 } else if (temperature >= 25 && temperature <= 35) {
 printf("Pleasant day\n");
 } else {
 printf("Cool day\n");
 }
}

// Question 11: Calculate percentage and display grade

#include <stdio.h>
int main() { int

obtainedMarks;
 printf("\nEnter obtained marks (out of 1100): ");

scanf("%d", &obtainedMarks);

 float percentage = (float)obtainedMarks / 1100 * 100;

 if (percentage >= 80) {

printf("Grade: A+\n"); } else

if (percentage >= 70) {

printf("Grade: A\n"); } else

if (percentage >= 60) {

printf("Grade: B\n"); } else

if (percentage >= 50) {

printf("Grade: C\n"); } else

if (percentage >= 40) {

printf("Grade: D\n");
 } else {
 printf("Grade: F\n");
 }
}

// Question 12: Perform arithmetic operation based on user choice

#include <stdio.h> int main() {

int choice; float num1, num2,

result; printf("\nEnter two
numbers: ");
 scanf("%f %f", &num1, &num2);

 printf("Enter your choice (1: Sum, 2: Subtract, 3: Multiply, 4: Divide): ");

scanf("%d", &choice);

 switch (choice) {
case 1:
 result = num1 + num2;

printf("Sum: %f\n", result);
 break;

case 2:
 result = num1 - num2;

printf("Difference: %f\n", result);
 break;

case 3:
 result = num1 * num2;

printf("Product: %f\n", result);
 break; case 4:

if (num2 != 0) { result
= num1 / num2;
 printf("Quotient: %f\n", result);
 } else {
 printf("Error: Division by zero\n");
 }

break;

default:
 printf("Wrong choice\n");
 }

}

Chapter 12 Example Programs

Chapter 12 Exercise Programs

9. Write a program that inputs a number and displays the message "Prime number" if it is a prime

number, otherwise displays "Not a prime number".

Board Sample Paper

