COMPUTATIONAL

THINKING
CHAPTER

Topic No. Title

7.1 Definition of Computational Thinking 165
7.2 Principal of Computational Thinking 169
73 Algorithm Design Method 172
7.4 Algorithmic Activities 178
7.5 Dry Run 180
7.6 Introduction to LARP (Logic of Algorithms or Resolution of Problems) 184
7.7 Error Identification and Debugging 184

" Summery 189

* Exercise 190

* Answer Keys 195

Academy 164

] " NOTES SERIES Introduction to Systems

Q.1 What is Computational Thinking? Explain the key components of computational thinking.
Ans: 1. What is Computational Thinking, and why is it important?
Computational Thinking (CT) is a method of solving problems that involves using concepts
fundamental to computer science. It emphasizes logical thinking and structured approaches to
breaking down and solving problems in ways that computers or humans can process effectively.
2. Key Components of Computational Thinking
CT comprises four core components that guide problem-solving. Each plays a critical role in
breaking down and addressing challenges systematically:
a. Decomposition
Definition: Decomposition involves breaking down a complex problem into smaller, more
manageable sub-problems.
Explanation: This step is essential because it allows individuals to focus on specific aspects of a
problem rather than being overwhelmed by its entirety. Smaller problems are easier to
understand, analyze, and solve.
Example:

e Planning a wedding involves decomposing tasks into smaller activities like selecting a

venue, finalizing the guest list, arranging catering, and organizing transportation.
b. Pattern Recognition
Definition: Pattern recognition is the process of identifying similarities or trends within a
problem or across different problems.
Explanation: Recognizing patterns allows individuals to use past experiences or solutions to
address current challenges more effectively. It reduces redundancy and accelerates problem-
solving by applying known solutions to recurring problems.
Example:

e A teacher notices that students often struggle with the same math concepts every year.
Recognizing this pattern helps the teacher design targeted interventions, such as
additional practice exercises or visual aids.

Side Length 1: Area=1"=1
Side Length 2: Area = 2 =4(1+3)
Side Length 3: Area=3"=9 (1 +3 +5)
Side Length 4: Area=4"=16 (1 +3+5+7)
Side Length 5: Area = 5f =25(14+3+5+7+9)
Side Length 6: Area =6"=36 (1 +3+5+7+9+11)
Side Length 7: Area=7"=49 (1 +3+5+7+9+11+13)
+1 +1 +1 +1 +1 +1

AN NN NN
Side (1| 2| 3(4|5|6|7

Area | 1| 4| 9]|16(25|36|47

\% Y V V V
+3 +5 +7 +9 +11 +13

c. Abstraction

Definition: Abstraction is the process of identifying the essential details of a problem while
ignoring irrelevant or unnecessary information.

Explanation: By focusing only on the critical elements, abstraction simplifies problem-solving
and ensures clarity. It helps avoid distractions and keeps the solution process efficient.

Academy 165

NOTES SERIES Introduction to Systems

Q.2

Example:

e When designing a city map for tourists, abstraction involves highlighting key landmarks,
transportation routes, and accommodations while omitting minor details like residential
streets.

d. Algorithm Design

Definition: Algorithm design involves creating a step-by-step plan or instructions to solve a
problem.

Explanation: This step transforms a solution into a clear, logical sequence of actions that can be
executed by humans or machines. Algorithms ensure consistency and reproducibility in problem-
solving.

Example:

e A recipe for baking a cake is an algorithm. It provides a step-by-step guide, such as
preheating the oven, mixing ingredients, and setting a timer for baking. Similarly, a
navigation app uses algorithms to guide drivers along the shortest or fastest route.

3. Practical Benefits of Computational Thinking

¢ Improved Problem-Solving Skills: CT enhances analytical and logical thinking, enabling
individuals to tackle challenges more effectively.
e Cross-Disciplinary Applications: The principles of CT are universal and apply to diverse
areas, such as medicine, education, engineering, and management.
« Efficiency and Scalability: By using decomposition, abstraction, and algorithms, CT helps
develop solutions that are efficient and scalable to handle problems of varying complexities.
What is an algorithm, and how does it help solve problems systematically?
Ans:
An algorithm is a precise, step-by-step collection of instructions designed to solve a specific
problem or complete a task. It is comparable to following a recipe to bake a cake, where each step
is outlined to achieve the desired outcome. The systematic nature of algorithms ensures that the
task can be repeated consistently with the same results.
Examples of Algorithms:
¢ Baking a Cake: The algorithm for baking a cake includes gathering ingredients, mixing
them, baking, and cooling the cake.
e Planting a Tree: Steps include choosing a spot, digging a hole, planting the tree, and
watering it regularly. This step-by-step approach ensures successful tree planting

HOW TO BAKE A CAKE?
1) Preheat the oven ﬁ
2) Gather the ingredients -
3) Measure out the ingredients S,
4) Mix together the ingredients ﬁgﬁ%“
to make the batter L
5) Grease a pan
6) Pour the batter into the pan
7) Put the pan in the oven
8) Set a timer
9) When the timer goes off, take the pan out of
the oven
10) Enjoy!

Academy 166

NOTES SERIES Introduction to Systems

Q.26
Ans:

Q.27
Ans:

Q.28
Ans:

Q.29
Ans:

Q.30
Ans:

Q.31
Ans:

Q.32
Ans:

Q.33
Ans:

Q.34
Ans:

Q.35
Ans:

Q.36
Ans:

SHORT QUESTIONS

Define computational thinking.
Computational thinking is a problem-solving process that involves a set of skills and techniques
designed to solve complex problems in a way that a computer can execute. It is not limited to
computer science and can be applied to other fields like biology, mathematics, and even daily
tasks.
What are the components of computational thinking?

COMPONENTS OF COMPUTATIONAL THINKING
The main components of computational thinking are decomposition, pattern recognition,
abstraction, and algorithms. These components help simplify problems, identify patterns, focus
on essential details, and create step-by-step solutions.

Explain decomposition.

EXPLAIN DECOMPOSITION
Decomposition is the process of breaking a complex problem into smaller, more manageable
parts. This makes it easier to understand and solve the problem step by step. For example,
building a birdhouse involves breaking it into tasks like designing, gathering materials, and
assembling.
Give an example of decomposition.

In the example of building a birdhouse, the tasks include: designing the birdhouse, gathering
materials, cutting the wood, assembling the pieces, painting and decorating, and installing the
birdhouse in a suitable location.
What is pattern recognition?

Pattern recognition is the process of identifying similarities or patterns within problems or data.
Recognizing these patterns helps predict outcomes and devise solutions efficiently. For instance,
identifying patterns in square areas helps us understand mathematical relationships.

How can the area of a square be found using pattern recogmtmn"

The area of a square can be calculated by adding consecutive odd numbers correspondmg to the
side length squared. For example, for a square with a side length of 3, the areais | +3+5=9.
What is abstraction?

ABSTRACTION
Abstraction simplifies complex problems by focusing on the essential details and ignoring
unnecessary ones. This helps in understanding and solving problems efficiently by concentrating
only on the main aspects.
What is an algorithm?

AN ALGORITHM
An algorithm is a precise sequence of instructions to solve a problem or complete a task. It
provides a structured method, similar to a recipe, to achieve a specific goal.
Give an example of an algorithm.

EXAMPLE OF AN ALGORITHM

Baking a cake involves an algorithm: preheat the oven, gather and measure ingredients, mix the
batter, pour it into a greased pan, bake, and enjoy the cake. Similarly, planting a tree includes
selecting a spot, digging a hole, placing the tree, filling the hole, and watering it.
What is the importance of debugging?

Debugging involves identifying and fixing errors in an algorithm. It is essential to ensure that the

solution or task is executed correctly and efficiently.

How does abstraction help in problem-solving?
ABSTRACTION HELP IN PROBLEM-SOLVING

Abstraction reduces complexity by focusing on the main steps while ignoring unnecessary details.

This helps in understanding and solving problems at a higher level without getting overwhelmed

by intricacies.

Academy 167

NOTES SERIES Introduction to Systems

Q.37
Ans:

Q.38
Ans:

Q.39
Ans:

Q.40
Ans:

Q.41
Ans:

Q.42
Ans:

29.

30.

31.

32.

36.

37.

What is LARP?
LARP
LARP stands for Logic of Algorithms for Resolution of Problems. It emphasizes practicing
algorithm design and evaluation to enhance problem-solving skills.
What is a flowchart?

FLOWCHART

A flowchart is a visual representation of a sequence of steps in an algorithm. It uses symbols and
arrows to illustrate the process clearly and logically.
How does computational thinking benefit daily life?

COMP TIONAL THINKING BENEFIT DAILY LIk
Computational thinking helps in daily tasks like planning a trip, organizing activities, and
managing time efficiently. It applies structured methods to simplify complex activities.
What is pseudocode?

A

PSEUDOCODE
Pseudocode is a simplified textual representation of an algorithm. It bridges the gap between
algorithm design and actual coding by describing steps without programming syntax.
Why are algorithms compared to recipes?
ALGORITHMS COMPARED TO RECIPES
Algorithms are compared to recipes because both provide clear step-by-step instructions to
achieve a goal. Just as a recipe ensures consistent cooking, an algorithm ensures systematic
problem-solving.
What is the first step in planting a tree?
FIRST STEP IN PLANTING A TREE

The first step is to choose a suitable spot in the garden where the tree can grow and thrive.

MULTIPLE CHOICE QUESTIONS

What is computational thinking?

(A) A method of memorizing information (B) A problem-solving process
(C) A software development tool (D) A mathematical formula
Which of the following is NOT a component of computational thinking?
(A) Decomposition (B) Abstraction

(C) Algebra (D) Algorithms

Decomposition involves:
(A) Combining problems into one large task (B) Breaking down problems into smaller parts

(C) Ignoring irrelevant details (D) Adding patterns to problems
What is the first step in building a birdhouse according to decomposition?

(A) Paint and decorate (B) Gather materials

(C) Design the birdhouse (D) Assemble the pieces

Pattern recognition involves identifying:

(A) Irregularities in data (B) Similarities within problems

(C) New tasks in decomposition (D) Complex algorithms

Which of the following helps recognize patterns in squares' areas?

(A) Adding consecutive odd numbers (B) Subtracting side lengths

(C) Multiplying side lengths by 3 (D) Dividing the area by the side length
What does abstraction focus on?

(A) Complex details of a problem (B) High-level overview of a problem
(C) Random problem-solving steps (D) Repeating all problem steps
What is an algorithm?

(A) A single complex step (B) A precise sequence of instructions
(C) A random method of solving problems (D) A set of unrelated tasks

Which tool is used for designing algorithms?

(A) Flowcharts (B) Calculators

(C) Paintbrushes (D) Measuring tape

Academy 168

] " NOTES SERIES Introduction to Systems

38. In algorithm design, debugging helps in:

(A) Solving new problems (B) Identifying and fixing errors
(C) Avoiding decomposition (D) Adding more steps

39. What is the first step in making tea?
(A) Add milk (B) Steep tea leaves
(C) Boil water (D) Pour tea into a cup

40. Which is an example of an algorithm?
(A) A list of materials for a project (B) A step-by-step process for planting a tree
(C) A drawing of a problem (D) A pattern of numbers

41. Which principle is emphasized in computational thinking?
(A) Ignoring the problem (B) Simplifying complex problems
(C) Adding more steps unnecessarily (D) Avoiding algorithm design

42. What is LARP?
(A) Logical Activities for Reducing Problems
(B) Logic of Algorithms for Resolution of Problems
(C) Learning Algorithms with Random Processes
(D) List of Applied Resolution Processes

43. What is the final step in baking a cake?

(A) Mix the batter (B) Preheat the oven

(C) Enjoy the cake (D) Set the timer
44. What is the result of focusing only on essential details in abstraction?

(A) Increased complexity (B) Reduced complexity

(C) Added unnecessary details (D) Ignored problem-solving
45, Which is NOT a benefit of computational thinking?

(A) Improved problem-solving (B) Simplifying tasks

(C) Designing algorithms (D) Memorizing facts
46. What does debugging involve?

(A) Ignoring errors (B) Identifying and correcting errors

(C) Creating more errors (D) Avoiding problem-solving
47. What helps reduce complexity in problem-solving?

(A) Decomposition (B) Debugging

(C) Algorithms (D) Abstraction
48. Which is an example of using algorithms in everyday life?

(A) Following directions to a location (B) Sketching a birdhouse

(C) Observing areas of squares (D) Breaking down a problem

7.2 PRINCIPALS OF COMPUTATIONAL THINKING
LONG QUESTION

Q.1 Discuss the importance of understanding a problem in computational thinking, using the
example of building a school website.

Ans: Understanding a problem is the foundational step in computational thinking and problem-solving.
It involves identifying the core issue, defining requirements, and setting clear objectives. Albert
Einstein’s quote, "If I had an hour to solve a problem, I'd spend 55 minutes thinking about the
problem and 5 minutes thinking about solutions," highlights the critical importance of this step.
When building a school website, understanding the problem ensures that the final solution meets
the needs of the school community. This involves:

o Identifying Requirements: Determining what features the website should have, such as
pages for news, events, schedules, and contact information.

e Understanding User Needs: Considering the primary users—students, teachers, and
parents—helps design an accessible and user-friendly interface.

e Considering Technical Constraints: Evaluating available resources, such as a web
server and software, ensures the feasibility of the project.
By thoroughly analyzing these aspects, developers can avoid mistakes, devise efficient
solutions, and produce a website that fulfills its purpose effectively. This process
demonstrates the value of clarity, focus, and planning in computational thinking,

Academy 169

NOTES SERIES Introduction to Systems

Q.1

Ans:

Q.2

Ans:

Q.3

Ans:

Q.4

Ans:

Q.S
Ans:

What are the key principles of Computational Thinking, and how do they facilitate
effective problem-solving?
The principles of Computational Thinking provide a structured approach to solving problems
systematically. These principles include Problem Understanding, Problem Simplification, and
Solution Selection and Design. Each principle is essential for developing efficient and effective
solutions.
1. Problem Understanding
Understanding the problem is the first and most critical step in computational thinking. It
involves identifying the core issue, defining requirements, and setting clear objectives.
e Clarity and Focus: By thoroughly analyzing the problem, one can avoid distractions and
focus on the relevant aspects.
e Defining Goals: Setting clear goals helps in visualizing the desired outcomes and
aligning efforts accordingly.
e Efficient Solutions: A well-understood problem enables the selection of appropriate
methods and tools, saving time and resources.
¢ Avoiding Mistakes: Proper understanding helps in avoiding common pitfalls that result
from misinterpretation.
Example: If tasked with building a school website, understanding involves identifying the
required features, audience needs (e.g., students, teachers, parents), and technical constraints like
available resources and tools.
2. Problem Simplification
Simplifying a problem means breaking it down into smaller, more manageable sub-problems.
This approach reduces complexity and enables efficient progress.
Example: To design a school website, the task can be divided into:
¢ Designing the layout.
e Creating the content.
e Coding the functionality.
3. Solution Selection and Design
After understanding and simplifying the problem, the next step is to evaluate various approaches
and select the most efficient one. This principle involves creating a detailed plan or algorithm to
solve the problem.
¢ Evaluation: Different approaches are considered for their effectiveness, time, and
resource requirements.
e Designing Solutions: The selected approach is implemented through detailed planning,
such as algorithm development or flowchart creation.

SHORT QUESTIONS

What is the first step in problem-solving in computational thinking?
FIRST STEP IN PROBLEM-SOLVING IN COMPUTATIONAL THINKING
The first step is understanding the problem, which involves identifying the core issue, defining
the requirements, and setting clear objectives.
Why is problem understanding essential?
PROBLEM UNDERSTANDING ESSENTIAL
It ensures clarity, defines achievable goals, devises efficient solutions, and helps avoid mistakes.
What is the significance of Albert Einstein’s quote in problem-solving?
n | | Te = v

It emphasizes the importance of spending more time understanding the problem before jumping
to solutions.
How does problem understanding improve efficiency?

By identifying the best methods and tools to address the problem, saving time and resources.
What is problem simplification?
PROBLEM SIMPLIFICATION

It involves breaking a complex problem into smaller, more manageable sub-problems.

Academy 170

NOTES SERIES Introduction to Systems

Q.6
Ans:

Q.7
Ans:

Q.8
Ans:

Q.9
Ans:

Q.10

Ans:

How can user needs affect the design of a school website?

SER NEE FFECT THE DESIGN OF A SCH .
Understanding user needs ensures a user-friendly interface that cate
parents.

What are technical constraints, and why should they be considered?
(S { W

These are limitations like resources, tools, or software that affect the solution's design and
implementation.
What steps should you take before starting to code a solution?

TAKE BEFORE STARTING TO CODE A SOLUTION
Understand the problem, gather requirements, define goals, and consider user needs and technical
constraints.
Why is it essential to ask questions when solving a problem?

ESSENTIAL TO ASK QUESTIONS WHEN ING A PROBLEM

Asking questions helps gather information, clarify doubts, and ensure a thorough understanding
of the problem.
What is involved in solution selection and design?

INVOLVED IN SOLUTION SELECTION AND DESIGN

It involves evaluating various approaches and creating a detailed plan or algorithm for the chosen

solution.
MULTIPLE CHOICE QUESTIONS

What is the first and most important step in problem-solving in computational thinking?

ASVI] BBV
rs to students, teachers, and

(A) Coding the solution (B) Testing the solution

(C) Understanding the problem (D) Implementing the solution
What does understanding a problem help to achieve?

(A) Confusion (B) Clarity and focus

(C) Random solutions (D) Increased mistakes

What is the purpose of defining goals when solving a problem?

(A) To start coding immediately (B) To avoid asking questions
(C) To set clear and achievable objectives (D) To ignore technical constraints
What is a key benefit of thoroughly understanding a problem?

(A) More mistakes (B) Efficient solutions

(C) Wasted effort (D) Irrelevant details

What should be identified first when building a school website?

(A) Coding the pages (B) Identifying requirements
(C) Skipping the design phase (D) Ignoring user needs

What does 'Problem Simplification' involve?

(A) Ignoring sub-problems

(B) Breaking down the problem into manageable tasks

(C) Implementing the final solution

(D) Evaluating all possible solutions

What is the primary purpose of problem simplification?

(A) To create confusion (B) To make tasks more manageable
(C) To ignore sub-problems (D) To design complex solutions
Which group of people should a school website consider as users?

(A) Teachers only (B) Students only

(C) Students, teachers, and parents (D) Developers only

What does a well-defined problem understanding avoid?

(A) Pitfalls and mistakes (B) Clarity and focus

(C) Efficient solutions (D) Resource allocation

Academy 171

] " NOTES SERIES Introduction to Systems

10. What is required for 'Solution Selection and Design'?
(A) Ignoring detailed plans (B) Evaluating different approaches
(C) Avoiding algorithms (D) Starting with random solutions

7.3 ALGORITHM DESIGN METHODS

Q.1 Explain the Importance of Flowcharts in Problem-Solving with Examples

Ans: 1.1. Visual Clarity and Simplification
Flowcharts visually represent the steps of a process or algorithm using standardized symbols,
making complex workflows easier to understand. For instance, in an e-commerce process, a
flowchart can depict steps like item selection, payment verification, and shipping, providing a
clear overview of the system.
1.2. Enhanced Communication
Flowcharts act as a universal language for team members and stakeholders. They provide a
consistent representation of processes, ensuring everyone interprets the workflow uniformly. For
example, a flowchart explaining an emergency evacuation plan ensures all team members
understand their roles.
1.3. Problem Identification and Optimization
Flowcharts help identify inefficiencies and bottlenecks. For instance, in a customer service
workflow, a flowchart might highlight redundant steps, allowing the team to streamline
operations.
1.4. Documentation and Training
Flowcharts serve as essential documentation for systems and processes, making them invaluable
for training new employees or referencing established procedures.
Conclusion
Flowcharts are indispensable tools in problem-solving, offering clarity, improving
communication, and enabling optimization of workflows.

Q.2 Discuss the Benefits and Differences Between Pseudocode and Flowcharts Using Examples
2.1. Benefits of Pseudocode
Pseudocode uses plain language to outline algorithms, helping focus on logic without worrying
about syntax. For example, the pseudocode for validating user login credentials simplifies
understanding of the steps involved in checking username and password.
2.2. Benefits of Flowcharts
Flowcharts use symbols and arrows to visually depict the flow of a process. They are particularly
effective in identifying decision points, such as in a shopping cart process where item availability,
payment, and shipping are visually mapped.
2.3. Key Differences
Representation: Pseudocode uses text, while flowcharts use graphical symbols.
Readability: Pseudocode reads like a story; flowcharts provide a visual sequence.
Application: Pseudocode is suited for algorithm planning; flowcharts are better for understanding
workflows.
2.4. Complementary Use
Both tools can complement each other. Pseudocode can outline the algorithm's logic, while
flowcharts provide a visual overview of the process.
Conclusion
Pseudocode and flowcharts serve distinct purposes but work well together to optimize problem-
solving and algorithm design.

Q.3 Explain the purpose and significance of the different flowchart symbols used in computational
processes.

Academy 172

NOTES SERIES Introduction to Systems

Flowchart symbols are essential tools for visually representing the steps and sequence of a
process or system. They provide a clear, concise way to illustrate algorithms and workflows,
ensuring they are easy to understand and implement. The following key symbols are widely used
in flowcharting:
1. Oval (Terminal Symbol)
e Purpose: Represents the start or end of a process.
e Description: Typically labeled as "Start" or "End," it serves as the entry or exit point of a
flowchart.
e« Example: In a login system, the process begins with the "Start" terminal symbol and
ends with the "End" terminal symbol.

2. Rectangle (Process Symbol)
* Purpose: Represents a specific task, operation, or process that needs to be performed.
e Description: This symbol is the most frequently used in flowcharts to depict activities
such as calculations or data processing.
¢ Example: A rectangle may denote a step like "Enter username and password" in a login
system.

3. Parallelogram (Input/Output Symbol)
¢ Purpose: Indicates input or output operations.
s Description: It shows where data is received (input) or displayed (output).
e Example: In a student grading system, the parallelogram might represent "Input grades"
or "Display final results."

[/

4. Diamond (Decision Symbol)
s Purpose: Represents a decision point where the flow can branch based on a condition or

question.
e Description: The flow continues in different directions depending on whether the
condition is true or false.
e Example: A diamond could represent a step like "Is the password correct?" in a login
system.
5. Arrow (Flowline)
e Purpose: Shows the direction of flow within the process.
e Description: Arrows connect the symbols and indicate the sequence in which steps are
executed.
o Example: Arrows link all steps in a flowchart, ensuring a logical progression from one
step to another.
Significance of Flowchart Symbols -
1. Clarity and Simplicity: Symbols standardize the representation of processes, making
them easy to understand at a glance.
2. Efficient Communication: They help convey complex workflows to diverse audiences,
ensuring everyone has a common understanding.

Academy 173

NOTES SERIES Introduction to Systems

Q3

Ans.

3. Problem Solving: Flowchart symbols help identify bottlenecks or inefficiencies in a
process, aiding in optimization.
4. Documentation: They serve as essential references for training and troubleshooting in
various systems.
Example: A flowchart for a login system showing steps such as inputting a username and
password, verifying credentials, and granting access shown in Figure 7.6. A user can make a
maximum of five attempts.

Lock
account
h. 4
‘ Alert user Grant sccess
A
End

Figure 7.6: Flowchart for a login system
What is pseudocode, and how does it help in planning algorithms? Provide examples to
illustrate its use.
Pseudocode is a high-level, informal representation of an algorithm that combines the structure of
programming languages with the readability of plain English. It is not executable by a computer
but serves as a guide for writing actual code in any programming language. The primary purpose
of pseudocode is to simplify algorithm design and communication by focusing on logic rather
than syntax.
Benefits of Pseudocode
1. Clarity: Pseudocode helps in understanding the logic of an algorithm without worrying
about the technical details of syntax.
2. Flexibility: It is universal and can be adapted to any programming language.
3. Planning: Programmers can plan their logic step-by-step, making it easier to debug and
improve the algorithm before implementation.
4. Communication: Pseudocode bridges the gap between developers and non-technical
team members by providing a readable format for discussing solutions.
Examples of Pseudocode
Example 1: Checking if a number is even or odd
Procedure CheckEvenOdd(number)

Academy 174

NOTES SERIES Introduction to Systems

Input: number {The number to be checked}
Output: "Even" if number is even, "Odd" if number is odd
Begin
If (number % 2 == 0) Then
Print "Even"
Else
Print "Odd"
End If
End
Explanation: This pseudocode takes a number as input and uses the modulo operator % to check
for divisibility by 2. If the remainder is zero, the number is even; otherwise, it is odd.
Example 2: Determining if a number is prime
Procedure IsPrime(number)
Input: number {The number to be checked}
Qutput: True if number is prime, False otherwise
Begin
If (number <= 1) Then
Return False
End If

For i from 2 to sqrt(number) Do
If (number % i == 0) Then
Return False
End If
End For
Return True
End
Explanation: This algorithm checks if a number is divisible by any value from 2 to its square
root. If no divisors are found, the number is declared prime
Example 3: Login System Verification
Procedure CheckCredentials(username, password)
Input: username, password
Output: Validity message
Begin
validUsername = "user123"
validPassword = "pass123"

If (username == validUsername) Then

If (password == validPassword) Then
Print "Login successful"
Else
Print "Invalid password"
End If
Else
Print "Invalid username"
End If
End

Explanation: This pseudocode simulates a login system by validating the provided username and
password against stored values. It outputs appropriate messages based on the validation result.

Academy 175

NOTES SERIES Introduction to Systems

Q.1

Ans:

Q.2
Ans:

Q.3

Ans:

Q4

Ans:

Q.5
Ans:

Q.6
Ans:

Q.7

Ans:

Q.8
Ans:

SHORT QUESTIONS
What is the primary purpose of flowcharts?
PRIMARY PURPOSE OF FLOWCHARTS
The primary purpose of flowcharts is to visually represent the steps of a process or system using
standardized symbols and arrows. This helps in simplifying complex workflows, improving
clarity, and communicating processes effectively among stakeholders.
How do flowcharts aid in problem-solving?
FLOWCHARTS AID IN PROBLEM-SOLVING
Flowcharts aid in problem-solving by identifying bottlenecks, inefficiencies, and redundancies in
a process. They visually map the steps, allowing teams to optimize and refine the workflow for
better outcomes.
What are the standard symbols used in flowcharts, and what do they represent?
M | ED IN FLO HARTS, A
Oval (Terminal): Represents the start or end of a process.
Rectangle (Process): Denotes tasks or operations to be performed.
Parallelogram (Input/Output): Indicates data input or output.
Diamond (Decision): Represents decision points with multiple outcomes.
Arrow (Flowline): Shows the direction of flow in the process.
What is pseudocode, and why is it used?

Pseudocode is a simplified way of describing an algorithm using structured plain language. It
focuses on the logic of the algorithm without syntax constraints, making it ideal for planning,
communicating, and converting into actual programming code.
What is an example of pseudocode for determining if a number is even or odd?
PSEUDOCODE FOR DETERMINING IF A NUMBER IS EVEN OR ODD
Procedure CheckEvenOdd(number):
Input: number
Output: "Even" if number is even, "Odd" otherwise
Begin
If (number % 2 == 0) Then
Print "Even"
Else
Print "Odd"
End If
End
This algorithm checks the remainder when the number is divided by 2 to determine its parity.
What are the advantages of using pseudocode?
ADVANTAGES OF USING PSEUDOCODE
Pseudocode provides clarity by focusing on algorithm logic without syntax, aids in planning the
steps of an algorithm, and facilitates communication among team members regardless of
programming language proficiency.
How does pseudocode help in software development?
PSEUD ODE HELP IN SOFTWARE DEVELOPMEN'
Pseudocode helps by ensuring the logic of the algorithm is sound before actual coding begins. It
acts as a blueprint, reducing errors and improving communication between team members
working in different programming environments.
What is the difference between pseudocode and actual code?
DIFFERENCE BETWEEN PSEUDOCODE AND ACTUAL CODE
Pseudocode uses plain language and structure to describe algorithm steps, while actual code adheres to
the syntax and rules of a specific programming language to execute tasks on a computer.

Academy 176

NOTES SERIES Introduction to Systems

Q.9
Ans:

Q.10
Ans:

10.

11.

12.

13.

What are the benefits of combining pseudocode and flowcharts in problem-solving?

COMBINING PSEUDOCODE AND FLOWCHARTS IN PROBLEM-SOLVING

Combining pseudocode and flowcharts provides a detailed, structured outline of the algorithm
(via pseudocode) and a visual representation of the process flow (via flowcharts), ensuring

clarity, better communication, and optimized solutions.
How does a flowchart communicate processes effectively?

FLOWCHART COMMUNICATE PROCESSES EFFECTIVELY

A flowchart uses graphical symbols and arrows to depict the sequence of steps in a process. Its
intuitive visual format makes it easier to understand, even for non-technical stakeholders,

ensuring everyone has a clear understanding of the workflow.

MULTIPLE CHOICE QUESTIONS

What is a flowchart?

(D) A programming language (B) A visual representation of a process
(C) A type of pseudocode (D) A mathematical formula
Which flowchart symbol represents the start or end of a process?

(D) Rectangle (B) Oval

(C) Parallelogram (D) Diamond

What does a parallelogram represent in a flowchart?

(D) Decision point (B) Input/Output

(C) Process step (D) Flow direction

What is the purpose of arrows in a flowchart?

(D) Represent decisions (B) Indicate start or end

(C) Show the flow direction (D) Depict processes
Which method uses structured plain language to describe an algorithm?
(D) Flowchart (B) Pseudocode

(C) Programming (D) Mathematical model

What is pseudocode?

(D) Code executed by computers

(B) A way to describe algorithms in simple language
(C) A programming language

(D) A graphical representation of a process

Why is pseudocode beneficial?

(D) It replaces actual programming (B) It provides clarity without syntax
(C) It eliminates debugging (D) It is a form of compiled code
Which symbol in a flowchart represents a decision point?

(D) Oval (B) Rectangle

(C) Parallelogram (D) Diamond

What does a rectangle symbolize in a flowchart?

(D) Start/End (B) Input/Output

(C) Process (D) Decision

When was the first standardized flowchart symbol developed?

(D) 1940 (B) 1947

(C) 1950 (D) 1960

What does pseudocode focus on?

(D) Syntax (B) Logic of the algorithm

(C) Graphical representation (D) Mathematical equations
What is the output of the pseudocode for determining if a number is odd?
(D) False (B) Even

(C) Odd (D) None

What is the main purpose of flowcharts?

Academy

177

] " NOTES SERIES Introduction to Systems

(D) Writing code (B) Documenting algorithms visually
(C) Solving mathematical problems (D) Debugging software
14. What does the pseudocode 'isPrime’ return for a number less than 2?
(D) True (B) False
(C) Prime (D) Invalid
15. Which pseudocode step ensures user authentication?
(D) Procedure declaration (B) Valid username/password check
(C) Input/output operation (D) Syntax analysis
16. What is the input for the 'CheckEvenOdd' pseudocode?
(D) Username and password (B) Validity message
(C) Number to be checked (D) Divisors of the number
17. What does the loop in the 'isPrime' pseudocode check for?
(D) Evenness (B) Divisibility by factors
(C) Equality to zero (D) Password validity
18. What does pseudocode communicate?
(D) Visual flow of processes (B) Steps of an algorithm in plain language
(C) Syntax of a programming language (D) Mathematical relationships
19. How does flowchart representation differ from pseudocode?
(D) Uses plain language (B) Uses graphical symbols
(C) Is read sequentially (D) Focuses on syntax
20. What is the main focus of flowcharts?
(D) Detailed algorithm explanation (B) Graphical depiction of steps
(C) Mathematical precision (D) Syntax enforcement
21. What condition is checked to determine an even number in pseudocode?
(D) number == (B) number % 2 =10
(C) number <= 1 (D) number /2 != 1
22, What feature of pseudocode makes it easy for team discussions?
(D) Complex syntax (B) Plain and structured language
(C) Graphical symbols (D) Mathematical equations
23. What is the output of the 'Check Credentials' pseudocode for incorrect username?
(D) Login successful (B) Invalid password
(C) Invalid username (D) Access denied
24. What does the decision symbol in a flowchart often lead to?
(D) A single process (B) Multiple branches
(C) A graphical error (D) A loop termination
25. What does the 'isPrime' pseudocode ensure in its loop?
(D) Equality of all numbers (B) Non-divisibility by factors
(C) Syntax correction (D) Sequential execution

7.4 ALGORITHMIC ACTIVITIES
LONG QUESTION

Q.1 Explain the Importance of Time and Space Complexity in Algorithm Design with Examples
Ans: 1.1. Time Complexity: Measuring Speed
Time complexity evaluates how fast an algorithm performs as input size grows. For example,
searching a name in a list of 10 items might take O(n) time, where n is the number of items. If the
list size increases to 100 or 1,000, the running time grows proportionally.
1.2. Space Complexity: Managing Memory
Space complexity determines the memory usage of an algorithm. For instance, an algorithm that
creates additional arrays or variables will have higher space complexity. Algorithms with O(1)
space complexity use constant memory regardless of input size, making them highly efficient.

Academy 178

NOTES SERIES Introduction to Systems

Q.1
Ans:

Q.2
Ans:

Q.3
Ans:

Q.4
Ans:

Q.5

Ans:

1.3. Importance of Balancing Both

Efficient algorithms balance time and space complexities to optimize performance. For example,
a sorting algorithm like Merge Sort has a time complexity of O(n log n) but uses extra memory,
while Quick Sort has the same time complexity but can run in-place with lower space usage.

1.4. Example: Evaluating Two Search Algorithms

Linear Search: Time complexity O(n). Searches through each item one by one; inefficient for
large datasets.

Binary Search: Time complexity O(log n). Divides the dataset into halves; much faster for sorted data.

SHORT QUESTIONS
What is time complexity and why is it important?

Time complexity measures the running time of an algorithm as input size increases. It is
important because it helps evaluate the efficiency of algorithms, allowing developers to choose
the faster one when multiple solutions are available.

Explain Big O notation with an example.

Big O notation is a mathematical representation of time complexity. For example, O(n) means the
running time grows linearly with input size. If searching a list of 100 items takes 100 steps, it’s
O(n).

What is space complexity, and what does it include?

Space complexity measures the memory required by an algorithm relative to input size. It
includes the memory needed for the input, variables, and any extra space the algorithm uses
during execution.
Why are dry runs and simulations used in algorithm evaluation?
Dry runs and simulations test algorithms step by step to ensure they perform correctly, identify
potential issues, and optimize time and space complexities before implementation.
How does input size affect time complexity?

INPUT SIZE AFFECT TIME COMPLEXITY
As input size increases, the running time of an algorithm grows based on its time complexity. For
instance, O(n) grows linearly, while O(n?) grows quadratically, significantly increasing execution

time for larger inputs.
MULTIPLE CHOICE QUESTIONS

What does time complexity measure in an algorithm?

(A) Memory usage (B) Speed of execution

(C) Code readability (D) Input size

How is time complexity usually expressed?

(A) Binary format (B) Decimal format

(C) Big O notation (D) Hexadecimal format

Which of the following represents the fastest time complexity?

(A) O(n?) (B) O(logn)

(C) O(n) (D) O(n’)

What does space complexity measure?

(A) Processing power (B) Memory usage

(C) Algorithm speed (D) Input format

What is a common activity in designing and evaluating algorithms?

(A) Writing code in binary (B) Conducting dry runs and simulations
(C) Memorizing time complexity formulas (D) Ignoring input size

What happens to the running time of an algorithm as input size increases?

(A) Decreases exponentially (B) Increases linearly

(C) Stays constant (D) Changes based on time complexity

Academy 179

] - NOTES SERIES Introduction to Systems

7 Which of the following is NOT a time complexity notation?
(A) O(n) (B) O(logn)
(C) O(n?) (D) O(n+n)
8. Why is space complexity important?

(A) It determines the readability of an algorithm.

(B) It helps manage the memory usage of an algorithm.
(C) It ensures an algorithm runs faster.

(D) It prevents syntax errors.

7.5 DRY RUN

Q.1 What is the significance of dry runs in computational thinking? Explain the process for dry

running both flowcharts and pseudocode with examples.
A dry run is the manual execution of an algorithm to test its logic without using a computer. This
process is fundamental in computational thinking as it helps identify errors, understand algorithm
behavior, and verify results. Dry runs can be applied to both flowcharts and pseudocode to ensure
correctness before implementation.
Dry Running a Flowchart
A flowchart visually represents the sequence of steps in an algorithm. To dry-run a flowchart:

1. Follow the Flowchart: Start at the "Start" symbol and proceed step-by-step, following

the arrows.

2. Simulate the Process: Manually track the values of variables and evaluate conditions.

3. Record Outputs: Document the results at each step.
Example: Flowchart to Calculate the Sum of Two Numbers
Flowchart Description:

e Start.

¢ Inputaandb.

¢ Addaand b to compute sum.
e Display sum.

« End

/Input first no. A/

Y
/Input 2nd no. B/

\
Sum=A+B

A 4

/ Display Sum/

Figure 7.7: Flowchart for adding two numbers
Dry Running Pseudocode
Pseudocode provides a textual representation of an algorithm in structured yet plain language. To
dry-run pseudocode:

Academy 180

] " NOTES SERIES Introduction to Systems

. Analyze the Logic: Read through the pseudocode to understand its flow.
2. Simulate Step-by-Step: Manually execute each step with test inputs.
3. Track Variables: Record the state of variables after each operation.
4. Verify Outputs: Compare the final output with expected results.
Example: Pseudocode to find max
Pseudocode:
Procedure FindMaximum(a, b)
Input: a, b {The two numbers to compare}
Output: The larger number
Begin
Ifa>b Then
Print "Maximum is: ", a
Else If b > a Then
Print "Maximum is: ", b
Else
Print "Both numbers are equal: ", a
End If
End

output Max,

Figure 7.8: Flowchart for finding maximum of two numbers

Importance of Dry Runs

1. Error Identification: Reveals logical and calculation errors before actual coding.

2. Clarity: Enhances understanding of algorithms and flow.

3. Testing Edge Cases: Validates behavior for boundary inputs.

4. Cost-Effective Debugging: Saves time by avoiding execution errors during coding.
Q.2 Explain the Time Complexity and Space Complexity in detail.

Dry Runs

Definition: Dry runs involve manually testing an algorithm step by step with sample inputs to

verify its logic.

Purpose: Identify logical errors and understand the flow of control in algorithms.
2. Solved Example of a Dry Run of Pseudocode

Pseudocode for Finding the Maximum of Two Numbers:

Algorithm 4: FindMax

1. Input: numl, num?2

Academy 181

NOTES SERIES Introduction to Systems

Q.1
Ans:

Q.2
Ans:

Q3
Ans:

Q4
Ans:

Q.5

Ans:

2. if numl > num?2 then3. max =numl
4. else5. max =num2
6. end if
7. Output: max
Steps to Dry Run:
Input: numl = 10, num2 = 15
Condition: — False
Result: Set max = num2 — max = 15
Output: 15
Simulations
Definition: Simulations use computer programs to model real-world processes, testing algorithms
in various scenarios.
Purpose: Evaluate performance, explore scenarios, and optimize algorithms without physical
implementation.
Benefits of Simulations
Cost-Effective: Simulations are cheaper and faster than real experiments.
Safe: Dangerous situations, like fire evacuations, can be tested safely.
Repeatable: The same scenario can be tested multiple times with different parameters.
Examples of Simulation
Weather Forecasting: Simulates future weather conditions using input data like temperature and
wind speed.
Traffic Planning: Simulates traffic flow to design better road systems and reduce congestion.
Conclusion
Dry runs ensure algorithms are logically correct by walking through their steps manually.
Simulations extend this by testing algorithms in diverse, repeatable scenarios, ensuring efficiency
and safety in implementation.
SHORT QUESTIONS

What is the purpose of a dry run?

PURPOSE OF A DRY RUN
A dry run is used to manually simulate an algorithm with sample data to verify its logic and
correctness before actual implementation.
How does a dry run help in debugging?
DRY RUN HELP IN DEBUGGING

Dry running identifies logical errors carly by walking through the steps of an algorithm with
sample inputs, saving time and effort during development.

What are the steps involved in a dry run of a flowchart?

STEPS INVOLVED IN A DRY RUN OF A FLOWCHART

1. Start the flowchart.

2. Input data (e.g., numbers).

3. Follow the steps sequentially (e.g., calculations).

4. Output the result.

5. Stop.

Example: For inputs 3 and 5, the flowchart calculates and outputs 8.

How is a dry run of pseudocode conducted?

Simulate the pseudocode line by line with sample inputs.

Apply the logic of conditions, loops, or operations.

Record intermediate results.

Produce the final output.

Example: For inputs 10 and 15, the pseudocode compares them and outputs the maximum value, 15.
What is simulation, and why is it useful?
Simulation models real-world processes using computer programs to test ideas or algorithms in a
controlled environment. It is cost-effective, repeatable, and safe, making it ideal for scenarios like
weather forecasting or traffic planning.

Academy 182

NOTES SERIES Introduction to Systems

Q.6
Ans:

Q.7
Ans:

Q.8
Ans:

Q.9
Ans:

Q.10

Ans:

What is the difference between a dry run and simulation?

DIFFERENCE BETWEEN A DRY RUN AND SIMULATION
A dry run manually tests an algorithm's logic, while a simulation uses a computer to model real-
world processes to test algorithms in various scenarios.
Give an example of simulation in daily life.
SIMULATION IN DAILY LIFE
Meteorologists use weather simulation to predict future weather by inputting data like
temperature and wind speed into computer models.
Why are dry runs necessary in algorithm development?

DRY RUNS NECESSARY IN ALGORITHM DEVELOPMENT
Dry runs catch logical errors, verify correctness, and ensure the algorithm's steps work as
intended before implementation.
How can simulation improve traffic flow?

SIMULATION IMPROVE TRAFFIC FLOW

Simulating traffic patterns helps city planners test road designs and signal timings, reducing
congestion without physically altering infrastructure.
What are the main benefits of simulation?
Simulations are cost-effective, safe, repeatable, and allow testing of complex or dangerous
scenarios, making them valuable in various fields like science, engineering, and urban planning.
Explain the Role of Dry Runs and Simulations in Algorithm Testing

MULTIPLE CHOICE QUESTIONS
What is a dry run?

(A) Running code on a computer

(B) Manually simulating an algorithm with sample data
(C) Writing pseudocode

(D) Designing a flowchart

What is the primary goal of a dry run?

(A) To execute the code (B) To test algorithm logic and correctness
(C) To create a model (D) To improve computer speed

In the dry run example of a flowchart, what is the output for 3 and 5 as inputs?

(A)3 (B)5

(C)8 (D) 15

What does a dry run of pseudocode involve?

(A) Designing new pseudocode

(B) Manually simulating the pseudocode line by line

(C) Drawing a flowchart

(D) Debugging compiled code

In the dry run example of pseudocode, what is the output for inputs 10 and 15?
(A) 10 (B) 15

(C) 25 (D)o

What is simulation?

(A) Running an algorithm on a real system

(B) Using a computer to model a real-world process

(C) Writing pseudocode

(D) Conducting physical experiments

What is one benefit of simulation?

(A) Always produces real-life results (B) Requires no setup

(C) Cost-effective and repeatable (D) Always guarantees success

Academy 183

NOTES SERIES Introduction to Systems

10.

11.

12.

13.

14.

15.

Why is dry running important?

(A) It automates debugging (B) It ensures logical errors are caught early
(C) It speeds up execution time (D) It replaces testing entirely

What is a common use of simulation in traffic planning?

(A) Designing flowcharts (B) Predicting traffic jams

(C) Testing pseudocode (D) Calculating vehicle speed

Which scenario is best suited for simulation?
(A) Debugging a small algorithm

(B) Testing plant growth under different conditions
(C) Writing pseudocode for a math problem

(D) Drawing flowcharts for simple processes
Which is an example of simulation?

(A) Debugging pseudocode (B) Weather forecasting

(C) Flowcharting (D) Writing code

What input-output method is used in the pseudocode dry run example?

(A) Assign variables directly (B) Compare and store the maximum
(C) Perform arithmetic operations (D) Use a for loop

Which of the following is NOT a benefit of simulation?

(A) High cost (B) Safety in testing dangerous scenarios
(C) Ability to repeat experiments (D) Cheaper than real experiments
What is tested in dry runs?

(A) Syntax errors (B) Algorithm correctness and logic
(C) Hardware failures (D) Network speeds

What does dry running help identify in algorithms?

(A) Memory requirements (B) Logical errors

(C) Syntax errors (D) Programming languages

7.6 INTRODUCTION TO LARP (LOGIC OF ALGORITHM FOR RESOLUTION OF PROBLEMS)

Q.1

Ans:

7.7 ERROR IDENTIFICATION AND DEBUGGING

LONG QUESTION

Describe how to write an algor:thm in LARP using an example.

Writing an alg,orlthm in LARP involves a st1 ucturcd approach that ensures each step is clear and
logical. It begins with the START command and concludes with END, ensuring clarity and flow.
Commands like WRITE are used to display messages, and READ is used to take input from the
user. Decision-making is implemented through IF.. THEN...ELSE statements.

Example:

START

WRITE "Enter a number™"

READ number

IF number % 2 == 0 THEN

WRITE "The number is even"

ELSE

WRITE "The number is odd"

ENDIF

END

Explanation:

This algorithm checks whether a number is even or odd. The user is prompted to enter a number.
Using the condition number % 2 == 0, the algorithm determines if the number is divisible by 2
(even) or not (odd) and then displays the result using the WRITE command.

Academy 184

] " NOTES SERIES Introduction to Systems

Q.2 Explain the types of errors in LARP and how to debug them.
Ans: ERRORS IN LARP AND HOW TO DEBUG THEM

Errors in LARP can be categorized into three types:

Syntax Errors: These occur when the syntax of the algorithm is incorrect, such as missing

commands or using an invalid symbol. For example, forgetting to include an END command.

Syntax errors are easy to spot because the LARP tool typically highlights them.

Runtime Errors: These arise during the execution of the algorithm. For instance, trying to divide

a number by zero or using an undefined variable. Runtime errors prevent the algorithm from

completing successfully.

Logical Errors: These occur when the algorithm's logic is flawed, such as using the wrong

condition in a decision-making step. Logical errors are the hardest to detect because the algorithm

runs but produces incorrect results.

Debugging Techniques:

Debugging involves identifying and fixing errors in an algorithm. Key techniques include:

e Tracing the Steps: Reviewing the algorithm step-by-step to find where it goes wrong.

e Using Comments: Adding explanations to each step of the algorithm to make it easier to
identify mistakes.

¢ Simplifying the Problem: Breaking down the algorithm into smaller parts and testing each
part separately.

e Checking Conditions: Ensuring that decision-making conditions are correctly defined.

e Reading Error Messages: Paying attention to error messages, as they often indicate the
exact issue in the algorithm.

DLARP - Freeware [new.larp] - a >
Flle Edit View Execute Project Options Help

WRITE Annual salary
IF Annual salary <1200000 THEN
WRITE “No Tax”

| >

READ {variables_list)
READ {variables_list}

DARe R FBE | EEQR] e &S » M S| oA] |
Browser 1|START A
¢ Main module 2 WRITE “HELLO 9th Class Students” i
g SiMAIN 3 WRITE “Enter Salary”
4 READ Salary
5 Annual salary= Salary *12
Templates : WRITE “Annual Salary is *
8
L]

WRITE {expression_llist) 10 ELSE

11 WRITE " Tax applies "
WRITE {expression_list} 12 ENDIF
QUERY {expression.ist] 13 END
IF(condition} THEN :;
ENDIF 16
IF{condition} THEN 17
dinstrection sequence] 18
ELSE 18
{Inwirection_sequence]
ENDIF 20
IF{condition} THEN 21
(instrection sequence) 22
ENDIF (condition} THEN | | ::
ENDIF =
{instrection sequence]
SELECT ::
ELSE 28 N
23
ENDSELECT 10
WHITE 31
32
END WHITE 33
REPEAT L34
v|>] [>|v|

Compiling project...
Compiling module MAIN...
Linking project...
Executing project...

T s |

Figure 7.9: LARP Software

Academy 185

NOTES SERIES Introduction to Systems

Why is LARP important in learning algorithms, and how does one write algorithms using
LARP? Provide examples to illustrate.
1. Introduction to LARP
LARP stands for Logic of Algorithms for Resolution of Problems, which is an interactive and
engaging method to learn how algorithms work by running them and observing their outputs. It
serves as a hands-on way to understand how algorithms process data and helps learners
experiment with different scenarios.
2. Importance of LARP
LARP is important for several reasons, including;
e Understanding Algorithm Logic:
LARP provides a practical approach to understanding how algorithms function by
breaking down complex operations into manageable steps.
e Input-Output Analysis:
By simulating various inputs, learners can observe how changes in data affect outputs,
improving their comprehension of algorithm efficiency.
e Hands-on Practice:
Writing algorithms in LARP allows students to test and refine their logic without the
complexities of programming syntax.
¢ Problem-Solving Skills Enhancement:
LARP encourages structured thinking and logical problem-solving by guiding students
through step-by-step processes to achieve solutions.
3. Writing Algorithms in LARP
Writing algorithms in LARP follows a simple and structured approach that makes it easier to
understand and implement problem-solving techniques. The LARP syntax is designed to be user-
friendly and includes:
s START and END Commands:
Every LARP algorithm begins with START and concludes with END, ensuring clarity in
structure.
¢ Basic Instructions:
o WRITE - Displays messages or outputs
o READ — Accepts user inputs
o IF..THEN.. ELSE — Handles decision-making
Example: Checking if a Number is Even or Odd
START
WRITE "Enter a number"
READ number
I[F number % 2 == 0 THEN
WRITE "The number is even"
ELSE
WRITE "The number is odd"
ENDIF
END
4. Benefits of Writing Algorithms Using LARP
Writing algorithms in LARP offers several advantages:
¢ Simplified Learning Curve:
Students can focus on logic without being overwhelmed by programming language
syntax.
e Incremental Development:
Breaking down complex tasks into smaller steps enhances comprehension.
e Error Reduction:
The structured nature of LARP minimizes mistakes and makes debugging easier.

Academy 186

NOTES SERIES Introduction to Systems

Q.1
Ans:

Q.2

Ans:

Q.3
Ans:

Q4
Ans:

Q.5
Ans:

Q.6
Ans:

Q.7
Ans:

Q.8
Ans:

Q.9
Ans:

Q.10

Ans:

e Enhanced Visualization:

The logical sequence of steps helps learners visualize the flow of the algorithm.
SHORT QUESTIONS

Define LARP.
LARP

LARP stands for "Logic of Algorithms for Resolution of Problems." It is an interactive tool that
allows users to learn how algorithms work by experimenting with them and observing how
different inputs affect the outputs.
Why is LARP considered important?
LARP is important because it helps users understand how algorithms function, enables them to
see the effects of various inputs on outputs, and provides a platform to practice writing and
improving algorithms.
What are the basic commands in LARP?

BASIC COMMANDS IN LARP
The basic commands in LARP include:
START: Indicates the beginning of the algorithm.
END: Marks the conclusion of the algorithm.
WRITE: Displays messages or outputs.
READ: Takes inputs from the user.
IF...THEN...ELSE: Handles decision-making processes.
What does the WRITE command do?

WRITE COMMAND DO

The WRITE command is used to display messages or outputs to the user. For example, it can
show results like "The number is even" based on algorithm conditions.

Explain the condition number % 2 = 0.
0 e

This condition checks whether a number is divisible by 2 without leaving a remainder. If true, the
number is even; otherwise, it is odd.
How do flowcharts help in LARP?
Flowcharts visually represent the steps of an algorithm using standard symbols. This makes it
easier to understand the logical flow and detect errors in the process.
What is a runtime error?
RUNTIME ERROR

A runtime error occurs during the execution of an algorithm. Examples include trying to divide
by zero or referencing an undefined variable.
Why are logical errors hard to detect?

LOGICAL ERRORS HARD TO DETECT

Logical errors are hard to detect because the algorithm runs without interruptions but produces

incorrect results due to faults in the decision-making or conditions.
How does LARP simplify algorithm learning?

LARP SIMPLIFY ALGORITHM LEARNING
LARP simplifies algorithm learning by breaking down complex problems into manageable steps, using
clear syntax, and allowing learners to focus on the logical flow rather than intricate coding details.
Name three debugging techniques.

DEBUGGING TECHNIQUES

Common debugging techniques include:
Trace the Steps: Reviewing each step to identify where the logic goes wrong.
Simplify the Problem: Breaking the algorithm into smaller parts to test them individually.

Academy 187

NOTES SERIES Introduction to Systems

10.

11.

12.

13.

14.

Check Conditions: Verifying that all decision-making conditions are correctly defined.

MULTIPLE CHOICE QUESTIONS

What does LARP stand for?

(A) Logic and Algorithms for Problem-solving

(B) Logic of Algorithms for Resolution of Problems
(C) Learning and Resolving Problems

(D) Learning and Algorithms for Projects

LARP is described as:

(A) A coding platform (B) A game-based algorithm system
(C) An interactive way to learn algorithms (D) A replacement for programming
Which key feature makes LARP interactive?

(A) Its complex coding (B) Running algorithms to see results
(C) Replacing syntax with symbols (D) Using graphical interfaces
Where can you find updates for LARP?

(A) Social media platforms (B) Trusted educational platforms
(C) Movie websites (D) News portals

LARP emphasizes understanding:

(A) Software coding (B) Algorithm logic and output
(C) Advanced programming techniques (D) Math computations

What is the first command in a LARP algorithm?

(A) WRITE (B) START

(C) READ (D) STOP

What is the purpose of the READ command in LARP?

(A) To output a message (B) To input data

(C) To end the algorithm (D) To check logic

Which command is used to display output in LARP?

(A) PRINT (B) SHOW

(C) WRITE (D) OUTPUT

How does LARP handle decision-making?

(A) Using loops (B) Through IF...THEN...ELSE statements
(C) By skipping steps (D) With comments

Why does LARP use simplified syntax?

(A) To focus on coding complexity (B) To ensure logical clarity

(C) To remove debugging needs (D) To automate algorithms
What does the condition number % 2 == 0 check for?

(A) If a number is positive (B) If a number is even

(C) If a number is odd (D) If a number is prime

Which keyword ends a LARP algorithm?

(A) STOP (B) END

(C) CLOSE (D) FINISH

What shape represents a decision in flowcharts?

(A) Rectangle (B) Diamond

(C) Oval (D) Circle

What shape represents input/output in a flowchart?

(A) Rectangle (B) Oval

(C) Parallelogram (D) Diamond

Why are flowcharts used in LARP?

(A) To automate decisions (B) To visualize algorithms

(C) To simplify output (D) To avoid errors

Academy

188

NOTES SERIES Introduction to Systems

16.

17.

18.

19.

20.

What are syntax errors?

(A) Errors during execution (B) Errors in logic

(C) Errors in writing commands (D) Undefined variables
What type of error occurs when dividing by zero?

(A) Syntax error (B) Runtime error

(C) Logical error (D) Debugging error
Logical errors occur due to:

(A) Incorrect conditions (B) Missing variables

(C) Undefined syntax (D) Invalid operations
Which debugging technique involves testing parts of an algorithm?

(A) Checking conditions (B) Simplifying the problem
(C) Writing comments (D) Reading error messages
What does the error message ""Undefined Variable'" mean?

(A) Variable has not been initialized (B) Incorrect syntax usage

(C) Runtime calculation error ED) Output mismatch

Computational thinking is important skill that enables individuals to solve complex problems
using methods that mirror the processes involved in computer science.

Decomposition is the process of breaking down a complex problem into smaller, more
manageable parts.

Pattern recognition involves looking for similarities or patterns among and within problems.
Abstraction involves simplifying complex problems by breaking them down into smaller, more
manageable part, and focusing only on the essential details while ignoring the unnecessary ones.
An algorithm is a step-by-step set of instructions to solve a problem or complete a task.
Understanding the problem is the first and most important step in problem-solving, especially in
computational thinking.

Simplifying a problem involves breaking it down into smaller, more manageable sub-problems.
Choosing the best solution involves evaluating different approaches and selecting the most
efficient one.

Flowcharts are visual representations of the steps in a process or system, depicted using different
symbols connected by arrows.

Pseudocode is a way of representing an algorithm using simple and informal language that is easy
to understand, it combines the structure of programming languages with the readability of plain
English, making it a useful tool for planning and explaining algorithms.

Time Complexity is a way to measure how fast or slow an algorithm performs. It tells us how the
running time of an algorithm changes as the size of the input increases.

Space complexity measures the amount of memory an algorithm uses in relation to the input size.
It is important to consider both the memory needed for the input and any additional memory used
by the algorithm.

A dry run involves manually going through the algorithm with sample data to identify any errors.
Simulation is when we use computer programs to create a model of a real- world process or
system.

LARP stands for logic of Algorithm for Resolution of Problems. It is a fun. and interactive way to
learn how algorithms work by actually running them and seeing the results.

Debugging is the process of finding and fixing errors in an algorithm or flowchart.

Academy 189

I

NOTES SERIES Introduction to Systems

49.

Q.24
Ans:

MULTIPLE CHOICE QUESTIONS

Which of the following best defines computational thinking?

(A) A method of solving problems using mathematical calculations only.

(B) A problem-solving approach that employs systematic, algorithmic, and logical thinking.
(C) A technique used exclusively in computer programming.

(D) An approach that ignores real-world applications.

Why is problem decomposition important in computational thinking?

(A) It simplifies problems by breaking them down into smaller, more manageabl parts.
(B) It complicates problems by adding more details.

(C) It eliminates the need for solving the problem..

(D) It is only useful for simple problems.

Pattern recognition involves

(A) Finding and using similarities within problems

(B) Ignoring repetitive elements

(C) Breaking problems into smaller pieces

(D) Writing detailed algorithms

Which term refers to the process of ignoring the details to focus on the main idea?

(A) Decomposition (C) Abstraction

(B) Pattern recognition (D) Algorithm design

Which of the following is a principle of computational thinking?

(A) Ignoring problem understanding (B) Problem simplification

(C) Avoiding solution design (D) mplementing random solutions

Algorithms are:

(A) Lists of data

(B) Graphical representations

(C) Step-by-step instructions for solving a problem

(D) Repetitive patterns

Which of the following is the first step in problem-solving according to computational

thinking?

(A) Writing the solution (€) Designing a flowchart

(C) Solve mathematical equations (D) Identify patterns

Flowcharts are used to:

(A) Code a program (B) Understanding the problem

(C) Selecting a solution (D) Represent algorithms graphically

Pseudocode is:

(A) A type of flowchart

(B) Ahigh-level description of an algorithm using plain language

(C) A programming language

(D) A debugging tool

Dry running a flowchart involves:

(A) Writing the code in a programming language (B) Testing the flowchart with sample data

(C) Converting the flowchart into pseudocode (D) Ignoring the flowchart details
SHORT QUESTIONS

Define computational thinking.

Computational Thinking (CT) is a systematic problem-solving process involving skills and
techniques to address complex issues in a way that can be executed by a computer. It is not
limited to computer science and can be applied in various fields such as biology, mathematics,
and daily tasks.

Academy 190

NOTES SERIES Introduction to Systems

Q.25

Ans:

Q.26
Ans:

Q.27
Ans:

Q.28
Ans:

Q.29
Ans:

Q. 30
Ans:

Q. 31
Ans:

Q. 32
Ans:

Q.33

Ans:

Q.34
Ans:

Q.35
Ans:

What is decomposition in computational thinking?

Decomposition is the process of breaking down a complex problem into smaller, more
manageable parts. This approach simplifies problem-solving by allowing each component to be
addressed individually. For example, building a birdhouse can be decomposed into designing,
gathering materials, assembling, and decorating.

Explain pattern recognition with an example.

Pattern recognition involves identifying similarities or trends within problems or data. For
example, the pattern in the areas of squares can be recognized by observing how the side length
increases the area through the addition of consecutive odd numbers.

Describe abstraction and its importance in problem-solving.

Abstraction simplifies complex problems by focusing on essential details while ignoring
irrelevant ones. This process reduces complexity and aids in efficient problem-solving. For
instance, when making tea, abstraction focuses on high-level steps like boiling water and steeping
tea, ignoring details like water temperature settings.

What is an algorithm?

An algorithm is a step-by-step set of instructions to solve a problem or complete a task. For
example, planting a tree involves steps like choosing a spot, digging a hole, placing the tree, and
watering it.

How does problem understanding help in computational thinking?

Understanding the problem ensures clarity, defines objectives, and aids in developing efficient
solutions. For example, building a school website requires identifying user needs, features, and
technical resources before starting the design process.

What are flowcharts and how are they used?

Flowcharts are visual representations of processes, using symbols like rectangles for actions and
diamonds for decisions. They are used to model processes, solve problems, and communicate
workflows clearly.

Explain the purpose of pseudocode.

Pseudocode is a high-level, plain-language description of an algorithm. It simplifies understanding the
logic without requiring programming syntax, making it useful for planning and communicating
algorithms.

How do you differentiate between flowcharts and pseudocode?

Flowcharts use graphical symbols to visually represent processes, while pseudocode uses
structured plain language to describe the steps. Flowcharts are ideal for understanding the flow,
while pseudocode focuses on algorithm logic.

What is a dry run and why is it important?

A dry run involves manually executing an algorithm or flowchart with sample data to verify its
correctness. It helps identify logical errors before implementation, ensuring the algorithm
performs as intended.

Describe LARP and its significance in learning algorithms.

LARP (Logic of Algorithms for Resolution of Problems) is an interactive way to learn algorithms
by running them to observe results. It aids in understanding algorithm behavior, testing inputs,
and improving problem-solving skills.

List and explain two debugging techniques.

1. Tracing the Steps: Go through each step of the algorithm to identify where it goes wrong.

2. Simplify the Problem: Break the algorithm into smaller parts and test each part independently
to locate errors.

Academy 191

NOTES SERIES Introduction to Systems

Ans:

LONG QUESTIONS

Write an algorithm to assign a grade based on the marks obtained by a student. The
grading system follows these criteria:
90 and above: A+
80 to 89: A
70 to 79: B
60 to 69: C
Below 60: F
Algorithm to Assign a Grade Based on Marks Obtained
Steps:
1. Start: Begin the algorithm.
2. Input Marks: Read the marks obtained by the student.
3. Decision Making: Use conditional statements to assign grades based on the following criteria:
If marks are 90 or above, assign grade A+.
If marks are 80 to 89, assign grade A.
If marks are 70 to 79, assign grade B.
If marks are 60 to 69, assign grade C.
If marks are below 60, assign grade F.
4. Display Grade: Output the assigned grade.
5. End: Terminate the algorithm.
Pseudocode:
START
INPUT marks
[F marks >= 90 THEN
PRINT "Grade: A+"
ELSE IF marks >= 80 THEN
PRINT "Grade: A"
ELSE IF marks >= 70 THEN
PRINT "Grade: B"
ELSE IF marks >= 60 THEN
PRINT "Grade: C"
ELSE
PRINT "Grade: F"
ENDIF
END
This approach ensures accurate grade assignment based on predefined criteria while remaining
simple and efficient.
Explain how you would use algorithm design methods, such as flowcharts and pseudocode,
to solve a complex computational problem. Illustrate your explanation with a detailed
example.
Define computational thinking and explain its significance in modern problem-solving.
Provide examples to illustrate how computational thinking can be applied in different fields.
Discuss the concept of decomposition in computational thinking. Why is it important?
Decomposition is the process of breaking down a complex problem into smaller, more
manageable parts. This approach helps in tackling each smaller component separately, making
problem-solving more efficient and structured.
Importance of Decomposition:
e Simplifies Complex Problems: Decomposition allows breaking large problems into
simpler tasks, making them easier to handle and solve.
¢ Improves Organization: By focusing on smaller tasks, teams or individuals can work
more systematically.

Academy 192

NOTES SERIES Introduction to Systems

¢ Enhances Debugging: Smaller modules make it easier to locate and correct errors.
o Example: When building a birdhouse, decomposition involves steps like designing,

gathering materials, cutting wood, assembling, and painting

Explain pattern recognition in the context of computational thinking. How does identifying
patterns help in problem-solving?
Pattern recognition in computational thinking involves identifying similarities or trends within
problems to simplify solutions. Recognizing recurring elements can lead to efficient problem-
solving and predictive insights.
How it Helps in Problem-Solving:

o Efficiency: Reusing existing solutions for recurring issues saves time and effort.

s Prediction: Recognizing trends enables better decision-making.

¢ Simplification: Complex problems can be generalized into simpler, familiar patterns.
Example:
When calculating the areas of squares, noticing the pattern (1, 4, 9, 16...) helps deduce the
formula side”2 for future calculations
What is an abstraction in computational thinking? Discuss its importance and provide

examples of how abstraction can be used to simplify complex problems.
Abstraction is the process of focusing only on essential details while ignoring irrelevant
complexities. It helps in designing efficient solutions by reducing the cognitive load of problem-
solving.
Importance of Abstraction:
e Simplifies Complex Systems: By focusing on key features, problems become more
manageable.
o« Improves Efficiency: Reduces unnecessary details, making algorithms and processes
more efficient.
e Generalization: Solutions can be applied across different problems with similar
characteristics.
Example:
When making tea, the abstract steps involve boiling water, adding tea leaves, and pouring,
without detailing each specific action like opening the tap, adjusting flame intensity, etc
Describe what an algorithm is and explain its role in computational thinking. Provide a detailed
example of an algorithm for solving a specific problem, and draw the corresponding flowchart.
An algorithm is a set of step-by-step instructions designed to solve a specific problem or perform
a task efficiently. In computational thinking, algorithms provide a logical sequence to reach a
desired outcome.
Role in Computational Thinking:
e Ensures systematic problem-solving.
e Helps in automation and repeatability of solutions.
s Provides clarity and structure to tasks.
Example Algorithm: Find the Maximum of Two Numbers
. Start
2. Read two numbers: A, B
3. If A> B, then print A is the maximum
4. Else, print B is the maximum
5. End

Academy 193

NOTES SERIES Introduction to Systems

Flowchart:

——»/output Max

Figure 7.8: Flowchart for finding maximum of two numbers
Compare and contrast flowcharts and pseudocode as methods for algorithm. design.
Discuss the advantages and disadvantages of each method, and provide examples where one
might be preferred over the other.
See Topic 7.3
Explain the concept of a dry run in the context of both flowcharts and pseudocode. How
does performing a dry run help in validating the correctness of an algorithm?
See Topic 7.5
What is LARP? Discuss its importance in learning and practicing algorithms.
See Topic 7.6
How does LARP enhance the understanding and application of computational thinking
principles? Provide a scenario where LARP can be used to improve an algorithm.
See Topic 7.6

Academy 194

NOTES SERIES

Introduction to Systems

ANSWER KEY

TOPIC 7.1 DECOMPOSITION

B 2 7 B B
A 7 B A B
c Y B B C
B kM » A A
~___TOPIC7.2 DECOMPOS]T]ON -
1 & 2 B 3 B B
6 B 7 B A B
TOPIC 7.3 ALGORITHM DESIGN METHODS
1 B 2 B - ¢ B
6 B 7 B & B
Tl B IV C B B
3 C YA B B B
21 IEH 22 BEE B B
TOPIC 7.4 ALGORI | HIMIC ACTIVITIES
B 2 C 3 4 B 5 B
D D
TOPIC 7.5 DRY RUN
B
B
B
TOPIC 7.6 INTRODUCTION TO LARP 7.7 ERROR IDENTIFICATION AND DEBUGGING
1 B
6 B
Tl B
3 B
TEXTBOOK EXERCISE MCQs
B I A 3 4 C 3 B
£ i B s EEN > B N B

Academy 195

