is 47 so the minutes is 47

EXERCISE 6.1 Q.1 Find in which quadrant the following angles lie. Write a co-terminal angle for each: (i) 65° Ans: 1st Quadrant $360^{\circ} + 65^{\circ} = 425^{\circ}$ $65^{\circ} - 360^{\circ} = -295^{\circ}$ (ii) 135° Ans: 2^{nd} Quadrant $135^{\circ} + 360^{\circ} = 495^{\circ}$ $135^{\circ} - 360^{\circ} = -225^{\circ}$ (iii) -40° Ans: 4th Quadrant $-40^{\circ} + 360^{\circ} = 320^{\circ}$ $-40^{\circ} - 360^{\circ} = -400^{\circ}$ (iv) 210° Ans: 3rd Ouadrant $210^{\circ} + 360^{\circ} = 570^{\circ}$ $210^{\circ} - 360^{\circ} = -150^{\circ}$ **(v)** -150° Ans: 3rd Quadrant $-150^{\circ} + 360^{\circ} = 210$ $-150 - 360^{\circ} = -510$ 0.2 Convert the following into degrees, minutes, and seconds: (i) 123.456° Ans: Degree: Whole number part is 123° Mintes take the decimal part (0.456) and multiply by $60 \times 0.456 = 27.36$ The whole number part is 27 so the minutes is 27 Seconds: Take the decimal part 0.36 and multiply by $60 \times 0.36 = 21.6$ so the second are 21 Final result 123°27′21" (ii) 58.7891° Ans: Degree: Whole number part is 58 Minutes: take decimal part (0.7891) and multiply by $60 \times 0.7891 = 47.346$ the whole number part

Second: Take decimal part (0.346) multiply by $60 \times 0.346 = 20.76$ the whole number part is 20 so the minutes are 20.

Second: Take decimal part (0.76) multiply by $60 \times 0.76 = 45.6$ the whole number part is 45 so the seconds are 45

Final result 58°47'45"

(iii) 90.5678°

Ans:

$$=90^{\circ} + 0.5678^{\circ} = 90^{\circ} + 0.5678^{\circ} \times 60'$$
$$=90^{\circ} + 34.068' = 90^{\circ} + 34' + 0.068'$$
$$=90^{\circ} + 34' + 4''$$
$$=90^{\circ}34'4''$$

Q.3 Convert the following into decimal degrees:

(i) 65°32′15″

Ans:

Degree keep 65

Minutes
$$\frac{32}{60} = 0.53$$

Second =
$$\frac{15}{3600}$$
 = 0.0042

$$65^{\circ} + 0.53 + 0.0042$$

(ii) 42°18′45″

Ans:

Minutes
$$\frac{18}{60} = 0.3$$

Second
$$\frac{45}{3600} = 0.0125$$

$$42^{\circ} + 0.3^{\circ} + 0.0125$$

Final result is 42.3125°

(iii) 78°45′36″

Ans:

Minutes
$$\frac{45}{60} = 0.75$$

Second
$$\frac{36}{3600} = 0.01$$

$$78^{\circ} + 0.75 + 0.01^{\circ}$$

Q.4 Convert the following into radians

(i) 36°

Ans:

$$1^{\circ} = \frac{\pi}{180}$$

Multiply by 36 on both side

$$36^{\circ} \times 1 = 36 \times \frac{\pi}{180} = \frac{\pi}{5} = 0.628 \text{ rad}$$

(ii) 22.5°

Ans:

$$1^{\circ} = \frac{\pi}{180}$$

Multiply both side by 22.5°

$$22.5^{\circ} \times 1^{\circ} = 22.5^{\circ} \times \frac{\pi}{180}$$

$$=\frac{1}{8}\pi = 0.393 \,\text{rad}$$

(iii) 67.5°

Ans:

$$1^{\circ} = \frac{\pi}{180}$$

Multiply both side by 67.5°

$$67.5^{\circ} \times 1^{\circ} = 67.5^{\circ} \times \frac{\pi}{180}$$

$$=\frac{3\pi}{8}=1.178 \,\text{rad}$$

Q.5 Convert the following into degrees:

(i)
$$\frac{\pi}{16}$$
 rad

Ans:

1rad =
$$\frac{180^{\circ}}{\pi}$$

Multiply both side by $\frac{\pi}{16}$ rad

$$\frac{\pi}{16} \text{ rad} = \frac{\pi}{16} \times \frac{180}{\pi}$$

$$\frac{\pi}{16}$$
 rad = 11.25°

(ii)
$$\frac{11\pi}{5}$$
 rad

Ans:

$$1 \text{rad} = \frac{180^{\circ}}{\pi}$$

Multiply both side by $\frac{11\pi}{5}$ rad

$$\frac{11\pi}{5} = \frac{11\pi}{5} = \frac{180}{\pi}$$

$$\frac{11\pi}{5} = 396^{\circ}$$

(iii)
$$\frac{7\pi}{6}$$
 rad

Ans:

$$1 \text{rad} = \frac{180^{\circ}}{\pi}$$

Multiply both side by $\frac{7\pi}{6}$ rad

$$\frac{7\pi}{6} = \frac{7\pi}{6} \times \frac{180^{\circ}}{\pi}$$

$$\frac{7\pi}{6} = 210^{\circ}$$

Q.6 Find the arc length and area of a sector if:

r = 6

cm and central angle $\theta = \frac{\pi}{3}$ radians:

Ans:

$$\ell = r\theta$$

$$\ell = 6 \times \frac{\pi}{3}$$

$$\ell = 6.28$$
cm

(ii)
$$r = \frac{4.8}{\pi}$$
 cm and central angle $\theta = \frac{5\pi}{6}$ radians:

Ans:

$$\ell = r\theta$$

$$\ell = \frac{4.8}{\pi} \times \frac{5\pi}{6}$$

$$\ell = 4cm$$

Q.7 If the central angle of a sector is 60° and the radius of the circle is 12 cm, find the area of the sector and the percentage of the total area of the circle it represents.

Ans:

$$\theta = 50^{\circ}$$

$$\theta = \frac{50 \times \pi}{180} = 0.87$$

$$r = 12$$
cm

Area of sector =?

Percentage of total area = ?

Area of sector
$$=\frac{1}{2}r^2\theta$$

$$=\frac{1}{2}(12)^2(0.87)=\frac{1}{2}(144)(0.87)$$

$$=62.64$$
cm²

Q.8 Find the percentage of the area of sector subtending an angle $\frac{\pi}{8}$ radians.

Ans:

Area =
$$\pi r^2$$

Sector area =
$$\frac{\theta}{2\pi} \times \pi r^2$$

$$= \frac{\frac{\pi}{8}}{2\pi} \times 100\% \text{ or } \frac{\pi}{8} \div 2\pi \times 100\%$$

$$\frac{\pi}{8} \times \frac{1}{2\pi} \times \%$$

$$=\frac{1}{16}\times100\%$$

Q.9 A circular sector of radius r = 12 cm has an angle of 150° . this sector is cut out and then bent to form a cone. What is the slant height and the radius of the base of this cone?

Ans:

$$r = 12cm$$
 $\theta = 150^{\circ}$

$$A = \frac{\theta}{360^{\circ}} \times \pi r^2$$

$$A = \frac{150^{\circ}}{360^{\circ}} \times 3.14 (12)^{2}$$

$$A = 0.4167 \times 452.39$$

$$A = 188.57cm$$

Slant height = 12 cm

Cone circumference

$$C = 2\pi r = \frac{\pi}{360^{\circ}} \times 2\pi R$$

$$C = \frac{150}{360} \times 2 \times 3.14 \times 12$$

$$C = 31.42$$

$$r = \frac{C}{2\pi} = \frac{31.42}{213.14}$$
$$r = 5cm$$

